通过学习组成核的演变过程进行在线模型选择。

Eura Shin, Predrag Klasnja, Susan A Murphy, Finale Doshi-Velez
{"title":"通过学习组成核的演变过程进行在线模型选择。","authors":"Eura Shin, Predrag Klasnja, Susan A Murphy, Finale Doshi-Velez","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by the need for efficient, personalized learning in mobile health, we investigate the problem of online compositional kernel selection for multi-task Gaussian Process regression. Existing composition selection methods do not satisfy our strict criteria in health; selection must occur quickly, and the selected kernels must maintain the appropriate level of complexity, sparsity, and stability as data arrives online. We introduce the Kernel Evolution Model (KEM), a generative process on how to evolve kernel compositions in a way that manages the bias-variance trade-off as we observe more data about a user. Using pilot data, we learn a set of <i>kernel evolutions</i> that can be used to quickly select kernels for new test users. KEM reliably selects high-performing kernels for a range of synthetic and real data sets, including two health data sets.</p>","PeriodicalId":75238,"journal":{"name":"Transactions on machine learning research","volume":"2023 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142638/pdf/","citationCount":"0","resultStr":"{\"title\":\"Online model selection by learning how compositional kernels evolve.\",\"authors\":\"Eura Shin, Predrag Klasnja, Susan A Murphy, Finale Doshi-Velez\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motivated by the need for efficient, personalized learning in mobile health, we investigate the problem of online compositional kernel selection for multi-task Gaussian Process regression. Existing composition selection methods do not satisfy our strict criteria in health; selection must occur quickly, and the selected kernels must maintain the appropriate level of complexity, sparsity, and stability as data arrives online. We introduce the Kernel Evolution Model (KEM), a generative process on how to evolve kernel compositions in a way that manages the bias-variance trade-off as we observe more data about a user. Using pilot data, we learn a set of <i>kernel evolutions</i> that can be used to quickly select kernels for new test users. KEM reliably selects high-performing kernels for a range of synthetic and real data sets, including two health data sets.</p>\",\"PeriodicalId\":75238,\"journal\":{\"name\":\"Transactions on machine learning research\",\"volume\":\"2023 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142638/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on machine learning research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受移动医疗领域高效、个性化学习需求的驱动,我们研究了多任务高斯过程回归的在线组成核选择问题。现有的组合选择方法无法满足我们在健康领域的严格标准;选择必须快速进行,并且所选内核必须在数据在线到达时保持适当的复杂性、稀疏性和稳定性水平。我们引入了内核演化模型(KEM),它是一种生成过程,可以在观察到更多用户数据时,以管理偏差-方差权衡的方式演化内核组合。利用试验数据,我们学习了一组内核演化,可用于为新的测试用户快速选择内核。KEM 可以为一系列合成数据集和真实数据集(包括两个健康数据集)可靠地选择高性能内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online model selection by learning how compositional kernels evolve.

Motivated by the need for efficient, personalized learning in mobile health, we investigate the problem of online compositional kernel selection for multi-task Gaussian Process regression. Existing composition selection methods do not satisfy our strict criteria in health; selection must occur quickly, and the selected kernels must maintain the appropriate level of complexity, sparsity, and stability as data arrives online. We introduce the Kernel Evolution Model (KEM), a generative process on how to evolve kernel compositions in a way that manages the bias-variance trade-off as we observe more data about a user. Using pilot data, we learn a set of kernel evolutions that can be used to quickly select kernels for new test users. KEM reliably selects high-performing kernels for a range of synthetic and real data sets, including two health data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Federated Learning with Convex Global and Local Constraints. Online model selection by learning how compositional kernels evolve. Beyond Distribution Shift: Spurious Features Through the Lens of Training Dynamics. RIFLE: Imputation and Robust Inference from Low Order Marginals. On the Convergence and Calibration of Deep Learning with Differential Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1