通过毫米波波束成形实现初始接入

Ms. Christina G.
{"title":"通过毫米波波束成形实现初始接入","authors":"Ms. Christina G.","doi":"10.36548/jsws.2020.2.005","DOIUrl":null,"url":null,"abstract":"Future Wi-Fi, 5G Cellular and millimetre-wave (mmWave) will depend on highly directional links in order to prevail over exuberant path loss experienced in the different bands of frequency. However, in order to establish these type of links, the receiver and transmitter need mutual discovery which will result in high energy consumption and large latency. The proposed work deals with reduction of energy consumption and latency significantly with the help of a fully digital front-end. The digital beamformer will receive the spatial samples within a shot, from all directions. However, in analog front-ends, sampling is allowed for beamforming in one particular direction at a time resulting in the time period in which the mobile is “on” for longer. This will result in an increase in energy consumption by more than four times for the analog front-end when compared with digital front-ends, taking into consideration the antenna arrays’ size. However, from the power consumption point of view, using a fully digital beamforming post beam discovery is not recommended. Hence in order to overcome this drawback, a digital beamformer coupled with a 4-bit A-D convertor with low resolution is proposed. The use of low resolution will decrease the power consumption such that it is in the same zone as that of analog beam forming while it is possible to make use of the fully digital beamforming spatial multiplexing capabilities resulting in improved energy efficiency and reduced discovery latency.","PeriodicalId":488591,"journal":{"name":"IRO Journal On Sustainable Wireless Systems","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Initial Access through Beamforming in mmWave\",\"authors\":\"Ms. Christina G.\",\"doi\":\"10.36548/jsws.2020.2.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future Wi-Fi, 5G Cellular and millimetre-wave (mmWave) will depend on highly directional links in order to prevail over exuberant path loss experienced in the different bands of frequency. However, in order to establish these type of links, the receiver and transmitter need mutual discovery which will result in high energy consumption and large latency. The proposed work deals with reduction of energy consumption and latency significantly with the help of a fully digital front-end. The digital beamformer will receive the spatial samples within a shot, from all directions. However, in analog front-ends, sampling is allowed for beamforming in one particular direction at a time resulting in the time period in which the mobile is “on” for longer. This will result in an increase in energy consumption by more than four times for the analog front-end when compared with digital front-ends, taking into consideration the antenna arrays’ size. However, from the power consumption point of view, using a fully digital beamforming post beam discovery is not recommended. Hence in order to overcome this drawback, a digital beamformer coupled with a 4-bit A-D convertor with low resolution is proposed. The use of low resolution will decrease the power consumption such that it is in the same zone as that of analog beam forming while it is possible to make use of the fully digital beamforming spatial multiplexing capabilities resulting in improved energy efficiency and reduced discovery latency.\",\"PeriodicalId\":488591,\"journal\":{\"name\":\"IRO Journal On Sustainable Wireless Systems\",\"volume\":\"1 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRO Journal On Sustainable Wireless Systems\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.36548/jsws.2020.2.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRO Journal On Sustainable Wireless Systems","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.36548/jsws.2020.2.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

未来的 Wi-Fi、5G 蜂窝网络和毫米波(mmWave)将依赖于高指向性链路,以克服不同频段中出现的巨大路径损耗。然而,为了建立这类链接,接收器和发射器需要相互发现,这将导致高能耗和大延迟。拟议的工作借助全数字前端大幅降低能耗和延迟。数字波束形成器将在一个镜头内接收来自所有方向的空间采样。然而,在模拟前端中,一次采样只允许在一个特定方向上进行波束成形,这导致移动设备 "开启 "的时间更长。考虑到天线阵列的尺寸,这将导致模拟前端的能耗比数字前端增加四倍以上。然而,从功耗的角度来看,不建议使用全数字波束成形后波束发现。因此,为了克服这一缺点,我们提出了一种数字波束形成器与低分辨率的 4 位 A-D 转换器相结合的方案。低分辨率的使用将降低功耗,使其与模拟波束形成的功耗处于同一区域,同时可以利用全数字波束形成的空间多路复用能力,从而提高能效并减少发现延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Initial Access through Beamforming in mmWave
Future Wi-Fi, 5G Cellular and millimetre-wave (mmWave) will depend on highly directional links in order to prevail over exuberant path loss experienced in the different bands of frequency. However, in order to establish these type of links, the receiver and transmitter need mutual discovery which will result in high energy consumption and large latency. The proposed work deals with reduction of energy consumption and latency significantly with the help of a fully digital front-end. The digital beamformer will receive the spatial samples within a shot, from all directions. However, in analog front-ends, sampling is allowed for beamforming in one particular direction at a time resulting in the time period in which the mobile is “on” for longer. This will result in an increase in energy consumption by more than four times for the analog front-end when compared with digital front-ends, taking into consideration the antenna arrays’ size. However, from the power consumption point of view, using a fully digital beamforming post beam discovery is not recommended. Hence in order to overcome this drawback, a digital beamformer coupled with a 4-bit A-D convertor with low resolution is proposed. The use of low resolution will decrease the power consumption such that it is in the same zone as that of analog beam forming while it is possible to make use of the fully digital beamforming spatial multiplexing capabilities resulting in improved energy efficiency and reduced discovery latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Kitchen Safety and Emergency Response System using IoT Correlating Decision Theory with Cyber Threat Intelligence: Novel Perspectives Comodule Estimation of Cognitive Sensor Networks Based on Partial Clustering for Partial Observed Data Coding of Chipless RFID Tag using Multiresonator Initial Access through Beamforming in mmWave
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1