{"title":"内核方法","authors":"Mark Chang","doi":"10.1201/9780429345159-7","DOIUrl":null,"url":null,"abstract":"Remember the xor example of a classification problem that is not linearly separable. If we map every example into a new representation, then the problem becomes linearly separable. Specifically, ... The major disadvantage of mapping points into a new space is that the new space may have very high dimension. For example, if points lie in d-dimensional Euclidean space, and we include the product of every pair of dimensions then we have quadratic blowup with the mapping f : R 7→ Rd2. We can avoid this explosion if we can achieve two objectives:","PeriodicalId":179087,"journal":{"name":"Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare","volume":"48 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel Methods\",\"authors\":\"Mark Chang\",\"doi\":\"10.1201/9780429345159-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remember the xor example of a classification problem that is not linearly separable. If we map every example into a new representation, then the problem becomes linearly separable. Specifically, ... The major disadvantage of mapping points into a new space is that the new space may have very high dimension. For example, if points lie in d-dimensional Euclidean space, and we include the product of every pair of dimensions then we have quadratic blowup with the mapping f : R 7→ Rd2. We can avoid this explosion if we can achieve two objectives:\",\"PeriodicalId\":179087,\"journal\":{\"name\":\"Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare\",\"volume\":\"48 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429345159-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429345159-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

还记得 xor 分类问题的例子吗?如果我们把每个例子都映射到一个新的表示中,那么问题就变得线性可分了。具体来说,...将点映射到新空间的主要缺点是,新空间的维度可能非常高。例如,如果点位于 d 维欧几里得空间中,并且我们将每对维度的乘积都包括在内,那么我们就会在映射 f :R 7→ Rd2 的映射会产生二次爆炸。如果我们能实现两个目标,就能避免这种爆炸:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel Methods
Remember the xor example of a classification problem that is not linearly separable. If we map every example into a new representation, then the problem becomes linearly separable. Specifically, ... The major disadvantage of mapping points into a new space is that the new space may have very high dimension. For example, if points lie in d-dimensional Euclidean space, and we include the product of every pair of dimensions then we have quadratic blowup with the mapping f : R 7→ Rd2. We can avoid this explosion if we can achieve two objectives:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Appendix Reinforcement Learning Artificial Neural Networks Deep Learning Neural Networks Unsupervised Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1