{"title":"流体动力学中自由表面流的函数不等式和强 Lyapunov 函数","authors":"T. Alazard, D. Bresch","doi":"10.4171/ifb/504","DOIUrl":null,"url":null,"abstract":"This paper is motivated by the study of Lyapunov functionals for four equations describing free surface flows in fluid dynamics: the Hele-Shaw and Mullins-Sekerka equations together with their lubrication approximations, the Boussinesq and thin-film equations. We identify new Lyapunov functionals, including some which decay in a convex manner (these are called strong Lyapunov functionals). For the Hele-Shaw equation and the Mullins-Sekerka equation, we prove that the $L^2$-norm of the free surface elevation and the area of the free surface are Lyapunov functionals, together with parallel results for the thin-film and Boussinesq equations. The proofs combine exact identities for the dissipation rates with functional inequalities. For the thin-film and Boussinesq equations, we introduce a Sobolev inequality of independent interest which revisits some known results and exhibits strong Lyapunov functionals. For the Hele-Shaw and Mullins-Sekerka equations, we introduce a functional which controls the $L^2$-norm of three-half spatial derivative. Under a mild smallness assumption on the initial data, we show that the latter quantity is also a Lyapunov functional for the Hele-Shaw equation, implying that the area functional is a strong Lyapunov functional. Precise lower bounds for the dissipation rates are established, showing that these Lyapunov functionals are in fact entropies. Other quantities are also studied such as Lebesgue norms or the Boltzmann's entropy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Functional inequalities and strong Lyapunov functionals for free surface flows in fluid dynamics\",\"authors\":\"T. Alazard, D. Bresch\",\"doi\":\"10.4171/ifb/504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is motivated by the study of Lyapunov functionals for four equations describing free surface flows in fluid dynamics: the Hele-Shaw and Mullins-Sekerka equations together with their lubrication approximations, the Boussinesq and thin-film equations. We identify new Lyapunov functionals, including some which decay in a convex manner (these are called strong Lyapunov functionals). For the Hele-Shaw equation and the Mullins-Sekerka equation, we prove that the $L^2$-norm of the free surface elevation and the area of the free surface are Lyapunov functionals, together with parallel results for the thin-film and Boussinesq equations. The proofs combine exact identities for the dissipation rates with functional inequalities. For the thin-film and Boussinesq equations, we introduce a Sobolev inequality of independent interest which revisits some known results and exhibits strong Lyapunov functionals. For the Hele-Shaw and Mullins-Sekerka equations, we introduce a functional which controls the $L^2$-norm of three-half spatial derivative. Under a mild smallness assumption on the initial data, we show that the latter quantity is also a Lyapunov functional for the Hele-Shaw equation, implying that the area functional is a strong Lyapunov functional. Precise lower bounds for the dissipation rates are established, showing that these Lyapunov functionals are in fact entropies. Other quantities are also studied such as Lebesgue norms or the Boltzmann's entropy.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/504\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/504","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Functional inequalities and strong Lyapunov functionals for free surface flows in fluid dynamics
This paper is motivated by the study of Lyapunov functionals for four equations describing free surface flows in fluid dynamics: the Hele-Shaw and Mullins-Sekerka equations together with their lubrication approximations, the Boussinesq and thin-film equations. We identify new Lyapunov functionals, including some which decay in a convex manner (these are called strong Lyapunov functionals). For the Hele-Shaw equation and the Mullins-Sekerka equation, we prove that the $L^2$-norm of the free surface elevation and the area of the free surface are Lyapunov functionals, together with parallel results for the thin-film and Boussinesq equations. The proofs combine exact identities for the dissipation rates with functional inequalities. For the thin-film and Boussinesq equations, we introduce a Sobolev inequality of independent interest which revisits some known results and exhibits strong Lyapunov functionals. For the Hele-Shaw and Mullins-Sekerka equations, we introduce a functional which controls the $L^2$-norm of three-half spatial derivative. Under a mild smallness assumption on the initial data, we show that the latter quantity is also a Lyapunov functional for the Hele-Shaw equation, implying that the area functional is a strong Lyapunov functional. Precise lower bounds for the dissipation rates are established, showing that these Lyapunov functionals are in fact entropies. Other quantities are also studied such as Lebesgue norms or the Boltzmann's entropy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.