连接机械传导和细胞代谢的机制

Kris A. DeMali, Alicia M. Salvi, Jennifer L. Bays
{"title":"连接机械传导和细胞代谢的机制","authors":"Kris A. DeMali, Alicia M. Salvi, Jennifer L. Bays","doi":"10.1096/fasebj.2020.34.s1.00150","DOIUrl":null,"url":null,"abstract":"External forces are sensed by cell surface adhesion receptors, such as E‐cadherin, and trigger robust actin cytoskeletal rearrangements that allow the cell to withstand the force. These actin rearrangements are energetically costly and require approximately half of the ATP in a cell. Previous work in our laboratory demonstrated that in response to force, E‐cadherin signals for enhanced energy production by stimulating AMP‐activated protein kinase (AMPK). AMPK triggers glucose uptake and its oxidation to ATP thereby providing the energy necessary for actin cytoskeletal remodeling. How mechanical force stimulates glucose uptake remains completely unexplored. In this study, we identify glucose transporter‐1 (GLUT1) as a force‐sensitive protein that is highly enriched in the plasma membrane in cells under tension. GLUT1 is necessary for the uptake of glucose and the reinforcement of the actin cytoskeleton that occurs when E‐cadherin experiences force. Intriguingly, GLUT1 is recruited to the cell‐cell junctions and forms a complex with E‐cadherin via a novel linkage mediated by the spectrin adaptor protein, Ankyrin G. Loss of Ankyrin G binding to E‐cadherin inhibits GLUT1 retention to the membrane, glucose uptake, and reinforcement of the actin cytoskeleton in response to force. This study provides the first mechanism for how cell mechanics stimulates the uptake of glucose.","PeriodicalId":22447,"journal":{"name":"The FASEB Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mechanisms Linking Mechanotransduction and Cell Metabolism\",\"authors\":\"Kris A. DeMali, Alicia M. Salvi, Jennifer L. Bays\",\"doi\":\"10.1096/fasebj.2020.34.s1.00150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"External forces are sensed by cell surface adhesion receptors, such as E‐cadherin, and trigger robust actin cytoskeletal rearrangements that allow the cell to withstand the force. These actin rearrangements are energetically costly and require approximately half of the ATP in a cell. Previous work in our laboratory demonstrated that in response to force, E‐cadherin signals for enhanced energy production by stimulating AMP‐activated protein kinase (AMPK). AMPK triggers glucose uptake and its oxidation to ATP thereby providing the energy necessary for actin cytoskeletal remodeling. How mechanical force stimulates glucose uptake remains completely unexplored. In this study, we identify glucose transporter‐1 (GLUT1) as a force‐sensitive protein that is highly enriched in the plasma membrane in cells under tension. GLUT1 is necessary for the uptake of glucose and the reinforcement of the actin cytoskeleton that occurs when E‐cadherin experiences force. Intriguingly, GLUT1 is recruited to the cell‐cell junctions and forms a complex with E‐cadherin via a novel linkage mediated by the spectrin adaptor protein, Ankyrin G. Loss of Ankyrin G binding to E‐cadherin inhibits GLUT1 retention to the membrane, glucose uptake, and reinforcement of the actin cytoskeleton in response to force. This study provides the first mechanism for how cell mechanics stimulates the uptake of glucose.\",\"PeriodicalId\":22447,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1096/fasebj.2020.34.s1.00150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1096/fasebj.2020.34.s1.00150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

细胞表面的粘附受体(如 E-cadherin)会感知外力,并触发强有力的肌动蛋白细胞骨架重排,使细胞能够承受外力。这些肌动蛋白重排的能量成本很高,大约需要细胞中一半的 ATP。我们实验室之前的研究表明,E-cadherin 会通过刺激 AMP 激活蛋白激酶(AMPK)发出信号,以增强能量生产。AMPK 触发葡萄糖摄取并将其氧化为 ATP,从而为肌动蛋白细胞骨架重塑提供必要的能量。机械力是如何刺激葡萄糖摄取的,目前还完全没有研究。在这项研究中,我们发现葡萄糖转运体-1(GLUT1)是一种对力敏感的蛋白质,它高度富集于张力作用下的细胞质膜中。葡萄糖转运体-1对葡萄糖的吸收和E-cadherin受力时发生的肌动蛋白细胞骨架的加强是必需的。耐人寻味的是,GLUT1 被招募到细胞-细胞连接处,并通过谱林适配蛋白 Ankyrin G 介导的新型连接与 E-cadherin 形成复合物。失去 Ankyrin G 与 E-cadherin 的结合会抑制 GLUT1 在膜上的保留、葡萄糖摄取以及肌动蛋白细胞骨架在受力时的强化。这项研究首次提供了细胞力学如何刺激葡萄糖摄取的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms Linking Mechanotransduction and Cell Metabolism
External forces are sensed by cell surface adhesion receptors, such as E‐cadherin, and trigger robust actin cytoskeletal rearrangements that allow the cell to withstand the force. These actin rearrangements are energetically costly and require approximately half of the ATP in a cell. Previous work in our laboratory demonstrated that in response to force, E‐cadherin signals for enhanced energy production by stimulating AMP‐activated protein kinase (AMPK). AMPK triggers glucose uptake and its oxidation to ATP thereby providing the energy necessary for actin cytoskeletal remodeling. How mechanical force stimulates glucose uptake remains completely unexplored. In this study, we identify glucose transporter‐1 (GLUT1) as a force‐sensitive protein that is highly enriched in the plasma membrane in cells under tension. GLUT1 is necessary for the uptake of glucose and the reinforcement of the actin cytoskeleton that occurs when E‐cadherin experiences force. Intriguingly, GLUT1 is recruited to the cell‐cell junctions and forms a complex with E‐cadherin via a novel linkage mediated by the spectrin adaptor protein, Ankyrin G. Loss of Ankyrin G binding to E‐cadherin inhibits GLUT1 retention to the membrane, glucose uptake, and reinforcement of the actin cytoskeleton in response to force. This study provides the first mechanism for how cell mechanics stimulates the uptake of glucose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Lycopene on Growth Factor Response in Prostate Cancer Cells Metabolic rewiring of the hypertensive kidney Non‐Enzymatic Lysine Lactoylation of Glycolytic Enzymes Photoaffinity Approach Reveals Antibiotic Adjuvant Activity toward Pseudomonas aeruginosa A Novel Multi‐marker Discovery Approach Identifies New Biomarkers for Parkinson’s Disease in Older People: an EXosomes in PArkiNson Disease (EXPAND) Ancillary Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1