1 应对毫米波 V2X 网络动态阻塞的深度强化学习框架

Sheng Chen, Kien Vu, Sheng Zhou, Z. Niu, M. Bennis, M. Latva-aho
{"title":"1 应对毫米波 V2X 网络动态阻塞的深度强化学习框架","authors":"Sheng Chen, Kien Vu, Sheng Zhou, Z. Niu, M. Bennis, M. Latva-aho","doi":"10.1109/6GSUMMIT49458.2020.9083744","DOIUrl":null,"url":null,"abstract":"Millimeter Wave (mmWave) systems are considered as one of the key technologies in future wireless systems due to the abundant spectrum resources in mmWave band. With the aim of achieving the capacity requirements in vehicular networks, large antenna arrays can be deployed at both the road side units (RSUs) side and the vehicles side. However, dynamic blockage caused by mobile obstacles in mmWave bands may hinder the system reliability. In this work, we study the temporal effects of dynamic blockage in vehicular networks and propose a deep reinforcement learning framework to overcome dynamic blockage. By dynamically adjusting blockage detection parameters and making intelligent handover decisions according to the observed states, system reliability can be significantly improved. Simulation results based on ray-tracing channel data show that the proposed scheme reduces the violation probability by 28.9% over conventional schemes.","PeriodicalId":385212,"journal":{"name":"2020 2nd 6G Wireless Summit (6G SUMMIT)","volume":"16 19","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"1 A Deep Reinforcement Learning Framework to Combat Dynamic Blockage in mmWave V2X Networks\",\"authors\":\"Sheng Chen, Kien Vu, Sheng Zhou, Z. Niu, M. Bennis, M. Latva-aho\",\"doi\":\"10.1109/6GSUMMIT49458.2020.9083744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter Wave (mmWave) systems are considered as one of the key technologies in future wireless systems due to the abundant spectrum resources in mmWave band. With the aim of achieving the capacity requirements in vehicular networks, large antenna arrays can be deployed at both the road side units (RSUs) side and the vehicles side. However, dynamic blockage caused by mobile obstacles in mmWave bands may hinder the system reliability. In this work, we study the temporal effects of dynamic blockage in vehicular networks and propose a deep reinforcement learning framework to overcome dynamic blockage. By dynamically adjusting blockage detection parameters and making intelligent handover decisions according to the observed states, system reliability can be significantly improved. Simulation results based on ray-tracing channel data show that the proposed scheme reduces the violation probability by 28.9% over conventional schemes.\",\"PeriodicalId\":385212,\"journal\":{\"name\":\"2020 2nd 6G Wireless Summit (6G SUMMIT)\",\"volume\":\"16 19\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd 6G Wireless Summit (6G SUMMIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/6GSUMMIT49458.2020.9083744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd 6G Wireless Summit (6G SUMMIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/6GSUMMIT49458.2020.9083744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

毫米波(mmWave)系统被认为是未来无线系统的关键技术之一,因为毫米波频段有丰富的频谱资源。为了满足车载网络的容量要求,可以在路侧单元(RSU)和车辆两侧部署大型天线阵列。然而,移动障碍物在毫米波频段造成的动态阻塞可能会妨碍系统的可靠性。在这项工作中,我们研究了动态阻塞在车载网络中的时间效应,并提出了一种克服动态阻塞的深度强化学习框架。通过动态调整阻塞检测参数,并根据观察到的状态做出智能切换决策,可以显著提高系统可靠性。基于光线跟踪信道数据的仿真结果表明,所提出的方案比传统方案降低了 28.9% 的违规概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1 A Deep Reinforcement Learning Framework to Combat Dynamic Blockage in mmWave V2X Networks
Millimeter Wave (mmWave) systems are considered as one of the key technologies in future wireless systems due to the abundant spectrum resources in mmWave band. With the aim of achieving the capacity requirements in vehicular networks, large antenna arrays can be deployed at both the road side units (RSUs) side and the vehicles side. However, dynamic blockage caused by mobile obstacles in mmWave bands may hinder the system reliability. In this work, we study the temporal effects of dynamic blockage in vehicular networks and propose a deep reinforcement learning framework to overcome dynamic blockage. By dynamically adjusting blockage detection parameters and making intelligent handover decisions according to the observed states, system reliability can be significantly improved. Simulation results based on ray-tracing channel data show that the proposed scheme reduces the violation probability by 28.9% over conventional schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards 6G: Evolution of Key Performance Indicators and Technology Trends Cellular and Wi-Fi in Unlicensed Spectrum: Competition leading to Convergence Design of a 20–80 GHz Down-Conversion Mixer for 5G Wireless Communication with 22nm CMOS A Measure of Personal Information in Mobile Data Ultra-Reliable Low-Latency Control Signaling in a Factory Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1