{"title":"基于强化学习的不确定轮式移动机器人鲁棒最佳控制:ADP 方法","authors":"Hoa Van Doan, Nga Thi-Thuy Vu","doi":"10.11591/eei.v13i3.7054","DOIUrl":null,"url":null,"abstract":"This paper presents a robust optimal control approach for the wheel mobile robot system, which considers the effects of external disturbances, uncertainties, and wheel slipping. The proposed method utilizes an adaptive dynamic programming (ADP) technique in conjunction with a disturbance observer. Initially, the system's state space model is formulated through the utilization of kinematic and dynamic models. Subsequently, the ADP method is employed to establish an online adaptive optimal controller, which solely relies on a single neural network for the purpose of function approximation. The utilization of the disturbance observer in conjunction with the compensation controller serves to alleviate the effects of disturbances. The Lyapunov theorem establishes the stability of the complete closed-loop system and the convergence of the weights of the neural network. The proposed approach has been shown to be effective through simulation under the effect of the disturbances and the change of the desired trajectory.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"2 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust optimal control for uncertain wheeled mobile robot based on reinforcement learning: ADP approach\",\"authors\":\"Hoa Van Doan, Nga Thi-Thuy Vu\",\"doi\":\"10.11591/eei.v13i3.7054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a robust optimal control approach for the wheel mobile robot system, which considers the effects of external disturbances, uncertainties, and wheel slipping. The proposed method utilizes an adaptive dynamic programming (ADP) technique in conjunction with a disturbance observer. Initially, the system's state space model is formulated through the utilization of kinematic and dynamic models. Subsequently, the ADP method is employed to establish an online adaptive optimal controller, which solely relies on a single neural network for the purpose of function approximation. The utilization of the disturbance observer in conjunction with the compensation controller serves to alleviate the effects of disturbances. The Lyapunov theorem establishes the stability of the complete closed-loop system and the convergence of the weights of the neural network. The proposed approach has been shown to be effective through simulation under the effect of the disturbances and the change of the desired trajectory.\",\"PeriodicalId\":502860,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"2 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i3.7054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i3.7054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust optimal control for uncertain wheeled mobile robot based on reinforcement learning: ADP approach
This paper presents a robust optimal control approach for the wheel mobile robot system, which considers the effects of external disturbances, uncertainties, and wheel slipping. The proposed method utilizes an adaptive dynamic programming (ADP) technique in conjunction with a disturbance observer. Initially, the system's state space model is formulated through the utilization of kinematic and dynamic models. Subsequently, the ADP method is employed to establish an online adaptive optimal controller, which solely relies on a single neural network for the purpose of function approximation. The utilization of the disturbance observer in conjunction with the compensation controller serves to alleviate the effects of disturbances. The Lyapunov theorem establishes the stability of the complete closed-loop system and the convergence of the weights of the neural network. The proposed approach has been shown to be effective through simulation under the effect of the disturbances and the change of the desired trajectory.