Murni Marbun, O. S. Sitompul, E. Nababan, Poltak Sihombing
{"title":"开发生成数据集分类模糊规则的模糊网格划分方法","authors":"Murni Marbun, O. S. Sitompul, E. Nababan, Poltak Sihombing","doi":"10.11591/eei.v13i3.5378","DOIUrl":null,"url":null,"abstract":"The main weakness of complex and sizeable fuzzy rule systems is the complexity of data interpretation in terms of classification. Classification interpretation can be affected by reducing rules and removing important rules for several reasons. Based on the results of experiments using the fuzzy grid partition (FGP) approach for high-dimensional data, the difficulty in generating many fuzzy rules still increases exponentially as the number of characteristics increases. The solution to this problem is a hybrid method that combines the advantages of the rough set method and the FGP method, which is called the fuzzy grid partition rough set (FGPRS) method. In the Irish data, the rough set approach reduces the number of characteristics and objects so that data with excessive values can be minimized, and the fuzzy rules produced using the FGP method are more concise. The number of fuzzy rules produced using the FGPRS method at K=2 is 50%; at K=K+1, it is reduced by 66.7% and at K=2 K, it is reduced by 75%. Based on the findings of the data collection classification test, the FGPRS method has a classification accuracy rate of 83.33%, and all data can be classified.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of the fuzzy grid partition methods in generating fuzzy rules for the classification of data set\",\"authors\":\"Murni Marbun, O. S. Sitompul, E. Nababan, Poltak Sihombing\",\"doi\":\"10.11591/eei.v13i3.5378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main weakness of complex and sizeable fuzzy rule systems is the complexity of data interpretation in terms of classification. Classification interpretation can be affected by reducing rules and removing important rules for several reasons. Based on the results of experiments using the fuzzy grid partition (FGP) approach for high-dimensional data, the difficulty in generating many fuzzy rules still increases exponentially as the number of characteristics increases. The solution to this problem is a hybrid method that combines the advantages of the rough set method and the FGP method, which is called the fuzzy grid partition rough set (FGPRS) method. In the Irish data, the rough set approach reduces the number of characteristics and objects so that data with excessive values can be minimized, and the fuzzy rules produced using the FGP method are more concise. The number of fuzzy rules produced using the FGPRS method at K=2 is 50%; at K=K+1, it is reduced by 66.7% and at K=2 K, it is reduced by 75%. Based on the findings of the data collection classification test, the FGPRS method has a classification accuracy rate of 83.33%, and all data can be classified.\",\"PeriodicalId\":502860,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i3.5378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i3.5378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of the fuzzy grid partition methods in generating fuzzy rules for the classification of data set
The main weakness of complex and sizeable fuzzy rule systems is the complexity of data interpretation in terms of classification. Classification interpretation can be affected by reducing rules and removing important rules for several reasons. Based on the results of experiments using the fuzzy grid partition (FGP) approach for high-dimensional data, the difficulty in generating many fuzzy rules still increases exponentially as the number of characteristics increases. The solution to this problem is a hybrid method that combines the advantages of the rough set method and the FGP method, which is called the fuzzy grid partition rough set (FGPRS) method. In the Irish data, the rough set approach reduces the number of characteristics and objects so that data with excessive values can be minimized, and the fuzzy rules produced using the FGP method are more concise. The number of fuzzy rules produced using the FGPRS method at K=2 is 50%; at K=K+1, it is reduced by 66.7% and at K=2 K, it is reduced by 75%. Based on the findings of the data collection classification test, the FGPRS method has a classification accuracy rate of 83.33%, and all data can be classified.