利用小波变换分析电流特征,识别双馈感应发电机的叶片不平衡故障

Vivek Kushwaha, Arvind Kumar Yadav, Sanjay Kumar Maurya
{"title":"利用小波变换分析电流特征,识别双馈感应发电机的叶片不平衡故障","authors":"Vivek Kushwaha, Arvind Kumar Yadav, Sanjay Kumar Maurya","doi":"10.11591/eei.v13i3.5679","DOIUrl":null,"url":null,"abstract":"Using wind turbines (WTs) equipped with doubly fed induction generators (DFIG) is a popular technology for generating renewable energy. To ensure safe operation, prompt maintenance, and better operational reliability, the induction generator used in wind energy must be monitored. In this paper, an analysis is carried out on stator currents of the DFIG machine in a wind farm to identify any blade imbalances in the wind farm. A fault characteristics extraction analysis is carried out on the machine stator currents to detect the fault in the system. Firstly, the mathematical equation of the DFIG blade unbalanced stator current is generated using the DFIG model. Secondly, Park's Transformation is used to modify the stator's 3-phase current. Further, by evaluating the feature frequency amplitude variation in the squared signal by doing a spectral analysis on the stator current vector's squared signal. Lastly, a Simulink model for the DFIG is developed. The suggested approach analyses the fault signal of the imbalanced blade fault at various wind velocities. The outcomes show that the suggested method for diagnosing impeller imbalance faults can successfully locate the fault.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"72 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blade imbalance fault identification in doubly fed induction generator through current signature analysis using wavelet transform\",\"authors\":\"Vivek Kushwaha, Arvind Kumar Yadav, Sanjay Kumar Maurya\",\"doi\":\"10.11591/eei.v13i3.5679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using wind turbines (WTs) equipped with doubly fed induction generators (DFIG) is a popular technology for generating renewable energy. To ensure safe operation, prompt maintenance, and better operational reliability, the induction generator used in wind energy must be monitored. In this paper, an analysis is carried out on stator currents of the DFIG machine in a wind farm to identify any blade imbalances in the wind farm. A fault characteristics extraction analysis is carried out on the machine stator currents to detect the fault in the system. Firstly, the mathematical equation of the DFIG blade unbalanced stator current is generated using the DFIG model. Secondly, Park's Transformation is used to modify the stator's 3-phase current. Further, by evaluating the feature frequency amplitude variation in the squared signal by doing a spectral analysis on the stator current vector's squared signal. Lastly, a Simulink model for the DFIG is developed. The suggested approach analyses the fault signal of the imbalanced blade fault at various wind velocities. The outcomes show that the suggested method for diagnosing impeller imbalance faults can successfully locate the fault.\",\"PeriodicalId\":502860,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"72 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i3.5679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i3.5679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用配备双馈感应发电机(DFIG)的风力涡轮机(WT)是一种流行的可再生能源发电技术。为确保安全运行、及时维护和更好的运行可靠性,必须对风能中使用的感应发电机进行监控。本文对风电场中双馈异步发电机的定子电流进行了分析,以确定风电场中是否存在叶片不平衡现象。对机器定子电流进行故障特征提取分析,以检测系统中的故障。首先,使用 DFIG 模型生成 DFIG 叶片不平衡定子电流的数学方程。其次,使用帕克变换来修改定子的三相电流。然后,通过对定子电流矢量平方信号进行频谱分析,评估平方信号的特征频率幅值变化。最后,为双馈变流器开发了一个 Simulink 模型。建议的方法分析了不同风速下叶片不平衡故障的故障信号。结果表明,建议的叶轮不平衡故障诊断方法可以成功定位故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blade imbalance fault identification in doubly fed induction generator through current signature analysis using wavelet transform
Using wind turbines (WTs) equipped with doubly fed induction generators (DFIG) is a popular technology for generating renewable energy. To ensure safe operation, prompt maintenance, and better operational reliability, the induction generator used in wind energy must be monitored. In this paper, an analysis is carried out on stator currents of the DFIG machine in a wind farm to identify any blade imbalances in the wind farm. A fault characteristics extraction analysis is carried out on the machine stator currents to detect the fault in the system. Firstly, the mathematical equation of the DFIG blade unbalanced stator current is generated using the DFIG model. Secondly, Park's Transformation is used to modify the stator's 3-phase current. Further, by evaluating the feature frequency amplitude variation in the squared signal by doing a spectral analysis on the stator current vector's squared signal. Lastly, a Simulink model for the DFIG is developed. The suggested approach analyses the fault signal of the imbalanced blade fault at various wind velocities. The outcomes show that the suggested method for diagnosing impeller imbalance faults can successfully locate the fault.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-project software defect prediction through multiple learning Palembang songket fabric motif image detection with data augmentation based on ResNet using dropout Secure map-based crypto-stego technique based on mac address Low insertion loss open-loop resonator–based microstrip diplexer with high selective for wireless applications Autonomous vehicle tracking control for a curved trajectory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1