{"title":"用于 COVID-19 检测的增强型卷积神经网络优化诊断模型","authors":"Aaron Meiyyappan Arul Raj, Sugumar Rajendran, Georgewilliam Sundaram Annie Grace Vimal","doi":"10.11591/eei.v13i3.6393","DOIUrl":null,"url":null,"abstract":"Computed tomography (CT) films are used to construct cross-sectional pictures of a particular region of the body by using many x-ray readings that were obtained at various angles. There is a general agreement in the medical community at this time that chest CT is the most accurate approach for identifying COVID-19 disease. It was demonstrated that chest CT had a higher sensitivity than reverse transcription polymerase chain reaction (RT-PCR) for the detection of COVID-19 illness. This article presents gray-level co-occurrence matrix (GLCM) texture feature extraction and convolutional neural network (CNN)-enabled optimized diagnostic model for COVID-19 detection. In this diagnostic model, CT scan images of patients are given as input. Firstly, GLCM algorithm is used to extract texture features from the CT scan images. This feature extraction helps in achieving higher classification accuracy. Classification is performed using CNN. It achieves higher accuracy than the k-nearest neighbors (KNN) algorithm and multi-layer preceptor (MLP). The accuracy of GLCM based CNN is 99%, F1 score is 99% and the recall rate is also 98%. CNN has achieved better results than MLP and KNN algorithms for COVID-19 detection.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced convolutional neural network enabled optimized diagnostic model for COVID-19 detection\",\"authors\":\"Aaron Meiyyappan Arul Raj, Sugumar Rajendran, Georgewilliam Sundaram Annie Grace Vimal\",\"doi\":\"10.11591/eei.v13i3.6393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computed tomography (CT) films are used to construct cross-sectional pictures of a particular region of the body by using many x-ray readings that were obtained at various angles. There is a general agreement in the medical community at this time that chest CT is the most accurate approach for identifying COVID-19 disease. It was demonstrated that chest CT had a higher sensitivity than reverse transcription polymerase chain reaction (RT-PCR) for the detection of COVID-19 illness. This article presents gray-level co-occurrence matrix (GLCM) texture feature extraction and convolutional neural network (CNN)-enabled optimized diagnostic model for COVID-19 detection. In this diagnostic model, CT scan images of patients are given as input. Firstly, GLCM algorithm is used to extract texture features from the CT scan images. This feature extraction helps in achieving higher classification accuracy. Classification is performed using CNN. It achieves higher accuracy than the k-nearest neighbors (KNN) algorithm and multi-layer preceptor (MLP). The accuracy of GLCM based CNN is 99%, F1 score is 99% and the recall rate is also 98%. CNN has achieved better results than MLP and KNN algorithms for COVID-19 detection.\",\"PeriodicalId\":502860,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i3.6393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i3.6393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced convolutional neural network enabled optimized diagnostic model for COVID-19 detection
Computed tomography (CT) films are used to construct cross-sectional pictures of a particular region of the body by using many x-ray readings that were obtained at various angles. There is a general agreement in the medical community at this time that chest CT is the most accurate approach for identifying COVID-19 disease. It was demonstrated that chest CT had a higher sensitivity than reverse transcription polymerase chain reaction (RT-PCR) for the detection of COVID-19 illness. This article presents gray-level co-occurrence matrix (GLCM) texture feature extraction and convolutional neural network (CNN)-enabled optimized diagnostic model for COVID-19 detection. In this diagnostic model, CT scan images of patients are given as input. Firstly, GLCM algorithm is used to extract texture features from the CT scan images. This feature extraction helps in achieving higher classification accuracy. Classification is performed using CNN. It achieves higher accuracy than the k-nearest neighbors (KNN) algorithm and multi-layer preceptor (MLP). The accuracy of GLCM based CNN is 99%, F1 score is 99% and the recall rate is also 98%. CNN has achieved better results than MLP and KNN algorithms for COVID-19 detection.