用于 COVID-19 检测的增强型卷积神经网络优化诊断模型

Aaron Meiyyappan Arul Raj, Sugumar Rajendran, Georgewilliam Sundaram Annie Grace Vimal
{"title":"用于 COVID-19 检测的增强型卷积神经网络优化诊断模型","authors":"Aaron Meiyyappan Arul Raj, Sugumar Rajendran, Georgewilliam Sundaram Annie Grace Vimal","doi":"10.11591/eei.v13i3.6393","DOIUrl":null,"url":null,"abstract":"Computed tomography (CT) films are used to construct cross-sectional pictures of a particular region of the body by using many x-ray readings that were obtained at various angles. There is a general agreement in the medical community at this time that chest CT is the most accurate approach for identifying COVID-19 disease. It was demonstrated that chest CT had a higher sensitivity than reverse transcription polymerase chain reaction (RT-PCR) for the detection of COVID-19 illness. This article presents gray-level co-occurrence matrix (GLCM) texture feature extraction and convolutional neural network (CNN)-enabled optimized diagnostic model for COVID-19 detection. In this diagnostic model, CT scan images of patients are given as input. Firstly, GLCM algorithm is used to extract texture features from the CT scan images. This feature extraction helps in achieving higher classification accuracy. Classification is performed using CNN. It achieves higher accuracy than the k-nearest neighbors (KNN) algorithm and multi-layer preceptor (MLP). The accuracy of GLCM based CNN is 99%, F1 score is 99% and the recall rate is also 98%. CNN has achieved better results than MLP and KNN algorithms for COVID-19 detection.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced convolutional neural network enabled optimized diagnostic model for COVID-19 detection\",\"authors\":\"Aaron Meiyyappan Arul Raj, Sugumar Rajendran, Georgewilliam Sundaram Annie Grace Vimal\",\"doi\":\"10.11591/eei.v13i3.6393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computed tomography (CT) films are used to construct cross-sectional pictures of a particular region of the body by using many x-ray readings that were obtained at various angles. There is a general agreement in the medical community at this time that chest CT is the most accurate approach for identifying COVID-19 disease. It was demonstrated that chest CT had a higher sensitivity than reverse transcription polymerase chain reaction (RT-PCR) for the detection of COVID-19 illness. This article presents gray-level co-occurrence matrix (GLCM) texture feature extraction and convolutional neural network (CNN)-enabled optimized diagnostic model for COVID-19 detection. In this diagnostic model, CT scan images of patients are given as input. Firstly, GLCM algorithm is used to extract texture features from the CT scan images. This feature extraction helps in achieving higher classification accuracy. Classification is performed using CNN. It achieves higher accuracy than the k-nearest neighbors (KNN) algorithm and multi-layer preceptor (MLP). The accuracy of GLCM based CNN is 99%, F1 score is 99% and the recall rate is also 98%. CNN has achieved better results than MLP and KNN algorithms for COVID-19 detection.\",\"PeriodicalId\":502860,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i3.6393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i3.6393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机断层扫描(CT)胶片是通过使用从不同角度获得的许多 X 射线读数来构建人体特定区域的横截面图像。目前医学界普遍认为,胸部 CT 是识别 COVID-19 疾病最准确的方法。研究表明,在检测 COVID-19 疾病方面,胸部 CT 的灵敏度高于反转录聚合酶链反应(RT-PCR)。本文介绍了用于 COVID-19 检测的灰度共现矩阵(GLCM)纹理特征提取和卷积神经网络(CNN)优化诊断模型。在该诊断模型中,患者的 CT 扫描图像作为输入。首先,使用 GLCM 算法从 CT 扫描图像中提取纹理特征。这种特征提取有助于获得更高的分类准确率。使用 CNN 进行分类。与 k-nearest neighbors(KNN)算法和多层预处理器(MLP)相比,它的准确率更高。基于 GLCM 的 CNN 的准确率为 99%,F1 分数为 99%,召回率也是 98%。在 COVID-19 检测方面,CNN 比 MLP 和 KNN 算法取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced convolutional neural network enabled optimized diagnostic model for COVID-19 detection
Computed tomography (CT) films are used to construct cross-sectional pictures of a particular region of the body by using many x-ray readings that were obtained at various angles. There is a general agreement in the medical community at this time that chest CT is the most accurate approach for identifying COVID-19 disease. It was demonstrated that chest CT had a higher sensitivity than reverse transcription polymerase chain reaction (RT-PCR) for the detection of COVID-19 illness. This article presents gray-level co-occurrence matrix (GLCM) texture feature extraction and convolutional neural network (CNN)-enabled optimized diagnostic model for COVID-19 detection. In this diagnostic model, CT scan images of patients are given as input. Firstly, GLCM algorithm is used to extract texture features from the CT scan images. This feature extraction helps in achieving higher classification accuracy. Classification is performed using CNN. It achieves higher accuracy than the k-nearest neighbors (KNN) algorithm and multi-layer preceptor (MLP). The accuracy of GLCM based CNN is 99%, F1 score is 99% and the recall rate is also 98%. CNN has achieved better results than MLP and KNN algorithms for COVID-19 detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-project software defect prediction through multiple learning Palembang songket fabric motif image detection with data augmentation based on ResNet using dropout Secure map-based crypto-stego technique based on mac address Low insertion loss open-loop resonator–based microstrip diplexer with high selective for wireless applications Autonomous vehicle tracking control for a curved trajectory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1