集成 MQTT-SN 和 CoAP 协议,增强 WSN 中的数据通信和资源管理

Emmanuel Nwankwo, Michael David, E. Onwuka
{"title":"集成 MQTT-SN 和 CoAP 协议,增强 WSN 中的数据通信和资源管理","authors":"Emmanuel Nwankwo, Michael David, E. Onwuka","doi":"10.11591/eei.v13i3.5158","DOIUrl":null,"url":null,"abstract":"Lightweight communication protocols for wireless sensor networks (WSNs) are unfolding for machine to machine (M2M) communications and thus there is always going to be a possible conflict of interest on which protocol is best suited for any particular application. The two protocols of interest in this study are the message queue telemetry transport protocol for sensor network (MQTT-SN), a variant of message queue telemetry transport (MQTT) protocol and the constrained application protocol (CoAP). There have been studies that reveal that these protocols perform differently based on the underlying network conditions. CoAP experience lower delays than MQTT for higher packet loss and higher delays for lower packet loss. MQTT default communication via a broker is easier to scale compared to CoAP direct request-response paradigm. Although this is a huge advantage over CoAP, it presents the single point-of-failure problem. In this paper we propose an integration of MQTT-CoAP protocol using an abstraction layer that enables both MQTT-SN and CoAP protocol to be used in the same sensor node. Resources are managed by directly modifying sensor node configuration using CoAP protocol. Performance evaluation of these protocols under the integrated scenario shows acceptable levels of latency and energy consumption for internet of thing (IoT) operations.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"114 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of MQTT-SN and CoAP protocol for enhanced data communications and resource management in WSNs\",\"authors\":\"Emmanuel Nwankwo, Michael David, E. Onwuka\",\"doi\":\"10.11591/eei.v13i3.5158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lightweight communication protocols for wireless sensor networks (WSNs) are unfolding for machine to machine (M2M) communications and thus there is always going to be a possible conflict of interest on which protocol is best suited for any particular application. The two protocols of interest in this study are the message queue telemetry transport protocol for sensor network (MQTT-SN), a variant of message queue telemetry transport (MQTT) protocol and the constrained application protocol (CoAP). There have been studies that reveal that these protocols perform differently based on the underlying network conditions. CoAP experience lower delays than MQTT for higher packet loss and higher delays for lower packet loss. MQTT default communication via a broker is easier to scale compared to CoAP direct request-response paradigm. Although this is a huge advantage over CoAP, it presents the single point-of-failure problem. In this paper we propose an integration of MQTT-CoAP protocol using an abstraction layer that enables both MQTT-SN and CoAP protocol to be used in the same sensor node. Resources are managed by directly modifying sensor node configuration using CoAP protocol. Performance evaluation of these protocols under the integrated scenario shows acceptable levels of latency and energy consumption for internet of thing (IoT) operations.\",\"PeriodicalId\":502860,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"114 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i3.5158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i3.5158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络(WSN)的轻量级通信协议正在为机器对机器(M2M)通信而展开,因此在哪种协议最适合任何特定应用的问题上总是可能存在利益冲突。本研究关注的两个协议是用于传感器网络的消息队列遥测传输协议(MQTT-SN)(消息队列遥测传输协议(MQTT)的变体)和受限应用协议(CoAP)。有研究表明,这些协议根据底层网络条件的不同而表现各异。在丢包率较高的情况下,CoAP 的延迟比 MQTT 低,而在丢包率较低的情况下,CoAP 的延迟比 MQTT 高。与 CoAP 的直接请求-响应模式相比,MQTT 通过代理进行默认通信更容易扩展。虽然这是 CoAP 的一大优势,但也带来了单点故障问题。在本文中,我们提出了一种 MQTT-CoAP 协议集成方案,使用抽象层可在同一传感器节点中同时使用 MQTT-SN 和 CoAP 协议。通过使用 CoAP 协议直接修改传感器节点配置来管理资源。在集成场景下对这些协议进行的性能评估显示,物联网(IoT)操作的延迟和能耗水平均可接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of MQTT-SN and CoAP protocol for enhanced data communications and resource management in WSNs
Lightweight communication protocols for wireless sensor networks (WSNs) are unfolding for machine to machine (M2M) communications and thus there is always going to be a possible conflict of interest on which protocol is best suited for any particular application. The two protocols of interest in this study are the message queue telemetry transport protocol for sensor network (MQTT-SN), a variant of message queue telemetry transport (MQTT) protocol and the constrained application protocol (CoAP). There have been studies that reveal that these protocols perform differently based on the underlying network conditions. CoAP experience lower delays than MQTT for higher packet loss and higher delays for lower packet loss. MQTT default communication via a broker is easier to scale compared to CoAP direct request-response paradigm. Although this is a huge advantage over CoAP, it presents the single point-of-failure problem. In this paper we propose an integration of MQTT-CoAP protocol using an abstraction layer that enables both MQTT-SN and CoAP protocol to be used in the same sensor node. Resources are managed by directly modifying sensor node configuration using CoAP protocol. Performance evaluation of these protocols under the integrated scenario shows acceptable levels of latency and energy consumption for internet of thing (IoT) operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-project software defect prediction through multiple learning Palembang songket fabric motif image detection with data augmentation based on ResNet using dropout Secure map-based crypto-stego technique based on mac address Low insertion loss open-loop resonator–based microstrip diplexer with high selective for wireless applications Autonomous vehicle tracking control for a curved trajectory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1