利用雷达马赫平均法和 mapreduce 算法优化结构化查询语言查询连接

Yathish Aradhya Bandur Chandrashekariah, D. H. A.
{"title":"利用雷达马赫平均法和 mapreduce 算法优化结构化查询语言查询连接","authors":"Yathish Aradhya Bandur Chandrashekariah, D. H. A.","doi":"10.11591/eei.v13i3.6837","DOIUrl":null,"url":null,"abstract":"Query optimization involves identifying and implementing the most effective and efficient methods and strategies to enhance the performance of queries. This is achieved by intelligently utilizing system resources and considering various performance metrics. Table joining optimization involves optimizing the process of combining two or more tables within a database. Structured query language (SQL) optimization is the progress of utilizing SQL queries in the possible way to achieve fast and accurate database results. SQL optimization is critical to decreasing the no of queries in research description framework (RDF) and the time for processing a huge number of relatable data. In this paper, four new algorithms are proposed such as hash-join, sort-merge, rademacher averages and mapreduce for the progress of SQL query join optimization. The proposed model is evaluated and tested using waterloo sparql diversity test suite (WatDiv) and lehigh university benchmark (LUBM) benchmark datasets in terms of time execution. The results represented that the proposed method achieved an enhanced performance of less execution time for various queries such as Q3 of 5362, Q8 of 5921, Q9 of 5854 and Q10 of 5691 milliseconds. The proposed gives better performance than other existing methods like hybrid database-map reduction system (AQUA+) and join query processing (JQPro).","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"11 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structured query language query join optimization by using rademacher averages and mapreduce algorithms\",\"authors\":\"Yathish Aradhya Bandur Chandrashekariah, D. H. A.\",\"doi\":\"10.11591/eei.v13i3.6837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Query optimization involves identifying and implementing the most effective and efficient methods and strategies to enhance the performance of queries. This is achieved by intelligently utilizing system resources and considering various performance metrics. Table joining optimization involves optimizing the process of combining two or more tables within a database. Structured query language (SQL) optimization is the progress of utilizing SQL queries in the possible way to achieve fast and accurate database results. SQL optimization is critical to decreasing the no of queries in research description framework (RDF) and the time for processing a huge number of relatable data. In this paper, four new algorithms are proposed such as hash-join, sort-merge, rademacher averages and mapreduce for the progress of SQL query join optimization. The proposed model is evaluated and tested using waterloo sparql diversity test suite (WatDiv) and lehigh university benchmark (LUBM) benchmark datasets in terms of time execution. The results represented that the proposed method achieved an enhanced performance of less execution time for various queries such as Q3 of 5362, Q8 of 5921, Q9 of 5854 and Q10 of 5691 milliseconds. The proposed gives better performance than other existing methods like hybrid database-map reduction system (AQUA+) and join query processing (JQPro).\",\"PeriodicalId\":502860,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i3.6837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i3.6837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

查询优化包括确定和实施最有效和最高效的方法和策略,以提高查询性能。这是通过智能地利用系统资源和考虑各种性能指标来实现的。表连接优化涉及优化数据库中两个或多个表的组合过程。结构化查询语言(SQL)优化是指在可能的情况下利用 SQL 查询实现快速、准确的数据库结果。SQL 优化对于减少研究描述框架(RDF)中的查询次数和处理大量相关数据的时间至关重要。本文提出了四种新算法,如 hash-join、sort-merge、rademacher averages 和 mapreduce,以促进 SQL 查询连接优化。在执行时间方面,使用滑铁卢 sparql 多样性测试套件(WatDiv)和利哈伊大学基准(LUBM)基准数据集对所提出的模型进行了评估和测试。结果表明,所提出的方法提高了性能,减少了各种查询的执行时间,如 Q3 为 5362 毫秒,Q8 为 5921 毫秒,Q9 为 5854 毫秒,Q10 为 5691 毫秒。与其他现有方法(如混合数据库-映射缩减系统 (AQUA+) 和连接查询处理 (JQPro))相比,所提出的方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structured query language query join optimization by using rademacher averages and mapreduce algorithms
Query optimization involves identifying and implementing the most effective and efficient methods and strategies to enhance the performance of queries. This is achieved by intelligently utilizing system resources and considering various performance metrics. Table joining optimization involves optimizing the process of combining two or more tables within a database. Structured query language (SQL) optimization is the progress of utilizing SQL queries in the possible way to achieve fast and accurate database results. SQL optimization is critical to decreasing the no of queries in research description framework (RDF) and the time for processing a huge number of relatable data. In this paper, four new algorithms are proposed such as hash-join, sort-merge, rademacher averages and mapreduce for the progress of SQL query join optimization. The proposed model is evaluated and tested using waterloo sparql diversity test suite (WatDiv) and lehigh university benchmark (LUBM) benchmark datasets in terms of time execution. The results represented that the proposed method achieved an enhanced performance of less execution time for various queries such as Q3 of 5362, Q8 of 5921, Q9 of 5854 and Q10 of 5691 milliseconds. The proposed gives better performance than other existing methods like hybrid database-map reduction system (AQUA+) and join query processing (JQPro).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-project software defect prediction through multiple learning Palembang songket fabric motif image detection with data augmentation based on ResNet using dropout Secure map-based crypto-stego technique based on mac address Low insertion loss open-loop resonator–based microstrip diplexer with high selective for wireless applications Autonomous vehicle tracking control for a curved trajectory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1