2016-2022年中国东北部分半干旱森林烧毁区地面水热系统和土壤养分综合监测数据集

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Earth System Science Data Pub Date : 2024-06-03 DOI:10.5194/essd-2024-187
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Șerban, Tao Zhan
{"title":"2016-2022年中国东北部分半干旱森林烧毁区地面水热系统和土壤养分综合监测数据集","authors":"Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Șerban, Tao Zhan","doi":"10.5194/essd-2024-187","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Under a warming climate, occurrences of wildfires have been increasingly more frequent in boreal and arctic forests during the last few decades. Wildfires can cause radical changes in the forest ecosystems and permafrost environment, such as irreversible degradation of permafrost, successions of boreal forests, rapid and massive losses of soil carbon stock, and increased periglacial geohazards. Since 2016, we have gradually and more systematically established a network for studying soil nutrients and monitoring the hydrothermal state of the active layer and near-surface permafrost in the northern Da Xing’anling (Hinggan) Mountains in Northeast China. The dataset of soil moisture content (0–9.4 m in depth), soil organic carbon (0–3.6 m), total nitrogen (0–3.6 m), and total phosphorus and potassium (0–3.6 m) have been obtained by field sampling and ensuing laboratory tests. Long-term datasets (2017–2022) of ground temperatures (0–20 m) and active layer thickness have been observed by thermistor cables permanently installed in boreholes. The present data can be used to simulate changes in permafrost features under a changing climate and wildfire disturbances and to explore the changing interactive mechanisms of the fire-permafrost-carbon system in the hemiboreal forest. Furthermore, can provide baseline data for studies and action plans to support the carbon neutralization initiative and assessment of ecological safety and management of the permafrost environment. This dataset can be easily accessed from the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Cryos.tpdc.300933, Li and Jin, 2024).","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrated dataset of ground hydrothermal regimes and soil nutrients monitored during 2016–2022 in some previously burned areas in hemiboreal forests in Northeast China\",\"authors\":\"Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Șerban, Tao Zhan\",\"doi\":\"10.5194/essd-2024-187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Under a warming climate, occurrences of wildfires have been increasingly more frequent in boreal and arctic forests during the last few decades. Wildfires can cause radical changes in the forest ecosystems and permafrost environment, such as irreversible degradation of permafrost, successions of boreal forests, rapid and massive losses of soil carbon stock, and increased periglacial geohazards. Since 2016, we have gradually and more systematically established a network for studying soil nutrients and monitoring the hydrothermal state of the active layer and near-surface permafrost in the northern Da Xing’anling (Hinggan) Mountains in Northeast China. The dataset of soil moisture content (0–9.4 m in depth), soil organic carbon (0–3.6 m), total nitrogen (0–3.6 m), and total phosphorus and potassium (0–3.6 m) have been obtained by field sampling and ensuing laboratory tests. Long-term datasets (2017–2022) of ground temperatures (0–20 m) and active layer thickness have been observed by thermistor cables permanently installed in boreholes. The present data can be used to simulate changes in permafrost features under a changing climate and wildfire disturbances and to explore the changing interactive mechanisms of the fire-permafrost-carbon system in the hemiboreal forest. Furthermore, can provide baseline data for studies and action plans to support the carbon neutralization initiative and assessment of ecological safety and management of the permafrost environment. This dataset can be easily accessed from the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Cryos.tpdc.300933, Li and Jin, 2024).\",\"PeriodicalId\":48747,\"journal\":{\"name\":\"Earth System Science Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/essd-2024-187\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-187","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要在气候变暖的情况下,过去几十年来,北方和北极森林中的野火发生得越来越频繁。野火会使森林生态系统和冻土环境发生剧烈变化,如冻土不可逆转的退化、北方森林的演替、土壤碳储量的快速和大量损失以及冰川周围地质灾害的增加等。自2016年以来,我们在中国东北大兴安岭(兴安岭)北部逐步建立了较为系统的土壤养分研究和活动层及近表层冻土水热状态监测网络。土壤含水量(0-9.4 米)、土壤有机碳(0-3.6 米)、全氮(0-3.6 米)、全磷和全钾(0-3.6 米)数据集是通过野外采样和随后的实验室测试获得的。通过永久安装在钻孔中的热敏电阻电缆观测到了地温(0-20 米)和活性层厚度的长期数据集(2017-2022 年)。目前的数据可用于模拟在不断变化的气候和野火干扰下永久冻土特征的变化,并探索半寒带森林中火灾-永久冻土-碳系统不断变化的互动机制。此外,还可为研究和行动计划提供基准数据,以支持碳中和倡议以及永冻土环境的生态安全和管理评估。该数据集可从国家青藏高原/第三极环境数据中心轻松获取(https://doi.org/10.11888/Cryos.tpdc.300933, Li and Jin, 2024)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An integrated dataset of ground hydrothermal regimes and soil nutrients monitored during 2016–2022 in some previously burned areas in hemiboreal forests in Northeast China
Abstract. Under a warming climate, occurrences of wildfires have been increasingly more frequent in boreal and arctic forests during the last few decades. Wildfires can cause radical changes in the forest ecosystems and permafrost environment, such as irreversible degradation of permafrost, successions of boreal forests, rapid and massive losses of soil carbon stock, and increased periglacial geohazards. Since 2016, we have gradually and more systematically established a network for studying soil nutrients and monitoring the hydrothermal state of the active layer and near-surface permafrost in the northern Da Xing’anling (Hinggan) Mountains in Northeast China. The dataset of soil moisture content (0–9.4 m in depth), soil organic carbon (0–3.6 m), total nitrogen (0–3.6 m), and total phosphorus and potassium (0–3.6 m) have been obtained by field sampling and ensuing laboratory tests. Long-term datasets (2017–2022) of ground temperatures (0–20 m) and active layer thickness have been observed by thermistor cables permanently installed in boreholes. The present data can be used to simulate changes in permafrost features under a changing climate and wildfire disturbances and to explore the changing interactive mechanisms of the fire-permafrost-carbon system in the hemiboreal forest. Furthermore, can provide baseline data for studies and action plans to support the carbon neutralization initiative and assessment of ecological safety and management of the permafrost environment. This dataset can be easily accessed from the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Cryos.tpdc.300933, Li and Jin, 2024).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
期刊最新文献
Reconstructing long-term (1980–2022) daily ground particulate matter concentrations in India (LongPMInd) Distributions of in situ parameters, dissolved (in)organic carbon, and nutrients in the water column and pore waters of Arctic fjords (western Spitsbergen) during a melting season Insights from a topo-bathymetric and oceanographic dataset for coastal flooding studies: the French Flooding Prevention Action Program of Saint-Malo Retrieval of dominant methane (CH4) emission sources, the first high-resolution (1–2 m) dataset of storage tanks of China in 2000–2021 Climatological distribution of ocean acidification variables along the North American ocean margins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1