胰高血糖素样肽-1 单体的能量景观和结构组合。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2024-06-03 DOI:10.1021/acs.jpcb.4c01794
Alasdair D. Keith, Eva Přáda Brichtová, Jack G. Barber, David J. Wales, Sophie E. Jackson* and Konstantin Röder*, 
{"title":"胰高血糖素样肽-1 单体的能量景观和结构组合。","authors":"Alasdair D. Keith,&nbsp;Eva Přáda Brichtová,&nbsp;Jack G. Barber,&nbsp;David J. Wales,&nbsp;Sophie E. Jackson* and Konstantin Röder*,&nbsp;","doi":"10.1021/acs.jpcb.4c01794","DOIUrl":null,"url":null,"abstract":"<p >While GLP-1 and its analogues are important pharmaceutical agents in the treatment of type 2 diabetes and obesity, their susceptibility to aggregate into amyloid fibrils poses a significant safety issue. Many factors may contribute to the aggregation propensity, including pH. While it is known that the monomeric structure of GLP-1 has a strong impact on primary nucleation, probing its diverse structural ensemble is challenging. Here, we investigated the monomer structural ensembles at pH 3, 4, and 7.5 using state-of-the-art computational methods in combination with experimental data. We found significant stabilization of β-strand structures and destabilization of helical structures at lower pH, correlating with observed aggregation lag times, which are lower under these conditions. We further identified helical defects at pH 4, which led to the fastest observed aggregation, in agreement with our far-UV circular dichroism data. The detailed atomistic structures that result from the computational studies help to rationalize the experimental results on the aggregation propensity of GLP-1. This work provides a new insight into the pH-dependence of monomeric structural ensembles of GLP-1 and connects them to experimental observations.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcb.4c01794","citationCount":"0","resultStr":"{\"title\":\"Energy Landscapes and Structural Ensembles of Glucagon-like Peptide-1 Monomers\",\"authors\":\"Alasdair D. Keith,&nbsp;Eva Přáda Brichtová,&nbsp;Jack G. Barber,&nbsp;David J. Wales,&nbsp;Sophie E. Jackson* and Konstantin Röder*,&nbsp;\",\"doi\":\"10.1021/acs.jpcb.4c01794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >While GLP-1 and its analogues are important pharmaceutical agents in the treatment of type 2 diabetes and obesity, their susceptibility to aggregate into amyloid fibrils poses a significant safety issue. Many factors may contribute to the aggregation propensity, including pH. While it is known that the monomeric structure of GLP-1 has a strong impact on primary nucleation, probing its diverse structural ensemble is challenging. Here, we investigated the monomer structural ensembles at pH 3, 4, and 7.5 using state-of-the-art computational methods in combination with experimental data. We found significant stabilization of β-strand structures and destabilization of helical structures at lower pH, correlating with observed aggregation lag times, which are lower under these conditions. We further identified helical defects at pH 4, which led to the fastest observed aggregation, in agreement with our far-UV circular dichroism data. The detailed atomistic structures that result from the computational studies help to rationalize the experimental results on the aggregation propensity of GLP-1. This work provides a new insight into the pH-dependence of monomeric structural ensembles of GLP-1 and connects them to experimental observations.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcb.4c01794\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcb.4c01794\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.4c01794","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然 GLP-1 及其类似物是治疗 2 型糖尿病和肥胖症的重要药物,但它们容易聚集成淀粉样纤维,这也是一个重大的安全问题。导致聚集倾向的因素很多,包括 pH 值。众所周知,GLP-1 的单体结构对原核形成有很大影响,但探究其多样化的结构组合却很有挑战性。在此,我们采用最先进的计算方法并结合实验数据,研究了 GLP-1 在 pH 值为 3、4 和 7.5 时的单体结构组合。我们发现,在较低的 pH 值下,β 链结构明显稳定,而螺旋结构则不稳定,这与观察到的聚集滞后时间相关,在这些条件下,聚集滞后时间较短。我们进一步确定了 pH 值为 4 时的螺旋缺陷,这导致了观察到的最快聚集,与我们的远紫外圆二色性数据一致。计算研究得出的详细原子结构有助于合理解释有关 GLP-1 聚集倾向的实验结果。这项工作为 GLP-1 单体结构组合的 pH 依赖性提供了新的见解,并将其与实验观察结果联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy Landscapes and Structural Ensembles of Glucagon-like Peptide-1 Monomers

While GLP-1 and its analogues are important pharmaceutical agents in the treatment of type 2 diabetes and obesity, their susceptibility to aggregate into amyloid fibrils poses a significant safety issue. Many factors may contribute to the aggregation propensity, including pH. While it is known that the monomeric structure of GLP-1 has a strong impact on primary nucleation, probing its diverse structural ensemble is challenging. Here, we investigated the monomer structural ensembles at pH 3, 4, and 7.5 using state-of-the-art computational methods in combination with experimental data. We found significant stabilization of β-strand structures and destabilization of helical structures at lower pH, correlating with observed aggregation lag times, which are lower under these conditions. We further identified helical defects at pH 4, which led to the fastest observed aggregation, in agreement with our far-UV circular dichroism data. The detailed atomistic structures that result from the computational studies help to rationalize the experimental results on the aggregation propensity of GLP-1. This work provides a new insight into the pH-dependence of monomeric structural ensembles of GLP-1 and connects them to experimental observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Diffusion in Polymethylene Chain Solutions with a Polar Component. Electron Spin Dynamics of the Intersystem Crossing in Aminoanthraquinone Derivatives: The Spectral Telltale of Short Triplet Excited States. Structural Insight into Melatonin's Influence on the Conformation of 42 Dimer Studied by Molecular Dynamics Simulation. QM/MM Study of the Reaction Mechanism of L-Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1. Confinement Effects on Reorientation Dynamics of Water Confined within Graphite Nanoslits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1