机械立体化学开端的终结。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-06-03 DOI:10.1021/acs.accounts.4c00195
Stephen M. Goldup*, 
{"title":"机械立体化学开端的终结。","authors":"Stephen M. Goldup*,&nbsp;","doi":"10.1021/acs.accounts.4c00195","DOIUrl":null,"url":null,"abstract":"<p >Stereochemistry has played a key role in the development of synthetic chemistry for the simple reason that the function and properties of most molecules, from medicine to materials science, depend on their shape and thus the stereoisomer used. However, despite the potential for rotaxanes and catenanes to display unusual forms of stereochemistry being identified as early as 1961, this aspect of the mechanical bond remained underexplored and underexploited; until 2014 it was only possible to access chiral rotaxanes and catenanes whose stereoisomerism is solely attributable to the mechanical bond using chiral stationary phase high performance liquid chromatography, which limited their production on scale and thus inhibited the investigation of their properties and applications. Furthermore, the stereogenic units of such molecules and analogues were often poorly described, which made it hard to fully articulate both what had been achieved in the field and what problems were left to solve. Relatively recently, methods to access rotaxanes and catenanes that display mechanical stereochemistry selectively have been developed, making these intriguing structures available for study in a range of prototypical applications including catalysis, sensing, and as chiral luminophores.</p><p >In this Account, we briefly discuss the history of mechanical stereochemistry, beginning in 1961 when the potential for mechanical stereoisomerism was first identified, before defining how mechanical stereochemistry arises from a structural point of view. Building on this, using simple stereochemical arguments, we confirm that the complete set of unique stereogenic units of two-component rotaxanes and catenanes have finally been identified and categorized unambiguously, with the last being identified only in 2024. After pausing to discuss some of the stereochemical curiosities that arise when molecules contain both covalent and mechanical stereogenic units, and the potential for stereoisomerism to arise due to co-conformational movement, we use our stereochemical framework to summarize our efforts to develop conceptually general approaches to [2]catenanes and [2]rotaxanes containing all of the possible mechanical stereogenic units. In particular, we highlight how the nature of a mechanical stereogenic unit affects the available strategies for their stereoselective synthesis. We finish by highlighting recent prototypical chemical applications of interlocked molecules that rely on their mechanical stereochemistry, before discussing future directions and challenges.</p><p >Taken together, we propose that the transition of such molecules from being hard to make and poorly described, to being available in high stereopurity using clearly articulated methodological and stereochemical concepts suggests that the field is finally maturing. Thus, we are now coming to the end of the beginning of mechanical stereochemistry. The stage is now set for such molecules to play a functional role in a range of areas, indeed in any chemical or physical application where control over molecular shape is required.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.accounts.4c00195","citationCount":"0","resultStr":"{\"title\":\"The End of the Beginning of Mechanical Stereochemistry\",\"authors\":\"Stephen M. Goldup*,&nbsp;\",\"doi\":\"10.1021/acs.accounts.4c00195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Stereochemistry has played a key role in the development of synthetic chemistry for the simple reason that the function and properties of most molecules, from medicine to materials science, depend on their shape and thus the stereoisomer used. However, despite the potential for rotaxanes and catenanes to display unusual forms of stereochemistry being identified as early as 1961, this aspect of the mechanical bond remained underexplored and underexploited; until 2014 it was only possible to access chiral rotaxanes and catenanes whose stereoisomerism is solely attributable to the mechanical bond using chiral stationary phase high performance liquid chromatography, which limited their production on scale and thus inhibited the investigation of their properties and applications. Furthermore, the stereogenic units of such molecules and analogues were often poorly described, which made it hard to fully articulate both what had been achieved in the field and what problems were left to solve. Relatively recently, methods to access rotaxanes and catenanes that display mechanical stereochemistry selectively have been developed, making these intriguing structures available for study in a range of prototypical applications including catalysis, sensing, and as chiral luminophores.</p><p >In this Account, we briefly discuss the history of mechanical stereochemistry, beginning in 1961 when the potential for mechanical stereoisomerism was first identified, before defining how mechanical stereochemistry arises from a structural point of view. Building on this, using simple stereochemical arguments, we confirm that the complete set of unique stereogenic units of two-component rotaxanes and catenanes have finally been identified and categorized unambiguously, with the last being identified only in 2024. After pausing to discuss some of the stereochemical curiosities that arise when molecules contain both covalent and mechanical stereogenic units, and the potential for stereoisomerism to arise due to co-conformational movement, we use our stereochemical framework to summarize our efforts to develop conceptually general approaches to [2]catenanes and [2]rotaxanes containing all of the possible mechanical stereogenic units. In particular, we highlight how the nature of a mechanical stereogenic unit affects the available strategies for their stereoselective synthesis. We finish by highlighting recent prototypical chemical applications of interlocked molecules that rely on their mechanical stereochemistry, before discussing future directions and challenges.</p><p >Taken together, we propose that the transition of such molecules from being hard to make and poorly described, to being available in high stereopurity using clearly articulated methodological and stereochemical concepts suggests that the field is finally maturing. Thus, we are now coming to the end of the beginning of mechanical stereochemistry. The stage is now set for such molecules to play a functional role in a range of areas, indeed in any chemical or physical application where control over molecular shape is required.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.accounts.4c00195\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.accounts.4c00195\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.accounts.4c00195","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Conspectus 立体化学在合成化学的发展中起到了关键作用,原因很简单,从医学到材料科学,大多数分子的功能和性质都取决于它们的形状,因此也取决于所使用的立体异构体。然而,尽管早在 1961 年就发现了轮烷和双烯烷具有显示不同寻常的立体化学形式的潜力,但对机械键这方面的研究和开发仍然不足;直到 2014 年,人们才有可能利用手性固定相高效液相色谱法获得立体异构体完全归因于机械键的手性轮烷和双烯烷,这限制了它们的规模化生产,从而阻碍了对其性质和应用的研究。此外,此类分子和类似物的立体结构单元往往描述不清,因此很难全面阐述该领域已取得的成就和有待解决的问题。最近,人们开发出了获得选择性显示机械立体化学的轮烷和卡替烷的方法,使这些有趣的结构可用于一系列原型应用的研究,包括催化、传感和手性发光体。在本报告中,我们简要讨论了机械立体化学的历史,从 1961 年首次发现机械立体异构的潜力开始,然后从结构角度定义了机械立体化学是如何产生的。在此基础上,通过简单的立体化学论证,我们确认了双组分轮烷和卡替烷的全部独特立体发生单元终于被确定并明确归类,而最后一个单元直到 2024 年才被确定。在暂停讨论分子同时含有共价和机械致立体单元时产生的一些立体化学奇思妙想,以及共构型运动可能导致的立体异构之后,我们利用立体化学框架总结了我们为开发含有所有可能机械致立体单元的 [2]catenanes 和 [2]rotaxanes 的概念性通用方法所做的努力。我们特别强调了机械立体发生单元的性质如何影响其立体选择性合成的可用策略。最后,我们重点介绍了依靠机械立体化学的互锁分子的最新化学应用原型,然后讨论了未来的方向和挑战。总之,我们认为,此类分子从难以制造、描述不清,到可以利用明确阐述的方法学和立体化学概念获得高立体纯度,表明该领域终于走向成熟。因此,机械立体化学的开端即将结束。现在,这种分子在一系列领域,实际上是在任何需要控制分子形状的化学或物理应用中发挥功能性作用的舞台已经准备就绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The End of the Beginning of Mechanical Stereochemistry

Stereochemistry has played a key role in the development of synthetic chemistry for the simple reason that the function and properties of most molecules, from medicine to materials science, depend on their shape and thus the stereoisomer used. However, despite the potential for rotaxanes and catenanes to display unusual forms of stereochemistry being identified as early as 1961, this aspect of the mechanical bond remained underexplored and underexploited; until 2014 it was only possible to access chiral rotaxanes and catenanes whose stereoisomerism is solely attributable to the mechanical bond using chiral stationary phase high performance liquid chromatography, which limited their production on scale and thus inhibited the investigation of their properties and applications. Furthermore, the stereogenic units of such molecules and analogues were often poorly described, which made it hard to fully articulate both what had been achieved in the field and what problems were left to solve. Relatively recently, methods to access rotaxanes and catenanes that display mechanical stereochemistry selectively have been developed, making these intriguing structures available for study in a range of prototypical applications including catalysis, sensing, and as chiral luminophores.

In this Account, we briefly discuss the history of mechanical stereochemistry, beginning in 1961 when the potential for mechanical stereoisomerism was first identified, before defining how mechanical stereochemistry arises from a structural point of view. Building on this, using simple stereochemical arguments, we confirm that the complete set of unique stereogenic units of two-component rotaxanes and catenanes have finally been identified and categorized unambiguously, with the last being identified only in 2024. After pausing to discuss some of the stereochemical curiosities that arise when molecules contain both covalent and mechanical stereogenic units, and the potential for stereoisomerism to arise due to co-conformational movement, we use our stereochemical framework to summarize our efforts to develop conceptually general approaches to [2]catenanes and [2]rotaxanes containing all of the possible mechanical stereogenic units. In particular, we highlight how the nature of a mechanical stereogenic unit affects the available strategies for their stereoselective synthesis. We finish by highlighting recent prototypical chemical applications of interlocked molecules that rely on their mechanical stereochemistry, before discussing future directions and challenges.

Taken together, we propose that the transition of such molecules from being hard to make and poorly described, to being available in high stereopurity using clearly articulated methodological and stereochemical concepts suggests that the field is finally maturing. Thus, we are now coming to the end of the beginning of mechanical stereochemistry. The stage is now set for such molecules to play a functional role in a range of areas, indeed in any chemical or physical application where control over molecular shape is required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Magnetoelectrics for Implantable Bioelectronics: Progress to Date Emergent Research Trends on the Structural Relaxation Dynamics of Molecular Clusters: From Structure-Property Relationship to New Function Prediction. Chiral Organometallic Complexes Derived from Helicenic N-Heterocyclic Carbenes (NHCs): Design, Structural Diversity, and Chiroptical and Photophysical Properties. Solid-Solution MXenes: Synthesis, Properties, and Applications Selective Functionalization of Alkenes and Alkynes by Dinuclear Manganese Catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1