Sanshan Jin, Shimeng Guo, Youwei Xu, Xin Li, Canrong Wu, Xinheng He, Benxun Pan, Wenwen Xin, Heng Zhang, Wen Hu, Yuling Yin, Tianwei Zhang, Kai Wu, Qingning Yuan, H Eric Xu, Xin Xie, Yi Jiang
{"title":"焦谷氨酰化 RFamide 肽受体识别 26RFa 的结构基础。","authors":"Sanshan Jin, Shimeng Guo, Youwei Xu, Xin Li, Canrong Wu, Xinheng He, Benxun Pan, Wenwen Xin, Heng Zhang, Wen Hu, Yuling Yin, Tianwei Zhang, Kai Wu, Qingning Yuan, H Eric Xu, Xin Xie, Yi Jiang","doi":"10.1038/s41421-024-00670-3","DOIUrl":null,"url":null,"abstract":"<p><p>The neuropeptide 26RFa, a member of the RF-amide peptide family, activates the pyroglutamylated RF-amide peptide receptor (QRFPR), a class A GPCR. The 26RFa/QRFPR system plays critical roles in energy homeostasis, making QRFPR an attractive drug target for treating obesity, diabetes, and eating disorders. However, the lack of structural information has hindered our understanding of the peptide recognition and regulatory mechanism of QRFPR, impeding drug design efforts. In this study, we determined the cryo-EM structure of the G<sub>q</sub>-coupled QRFPR bound to 26RFa. The structure reveals a unique assembly mode of the extracellular region of the receptor and the N-terminus of the peptide, and elucidates the recognition mechanism of the C-terminal heptapeptide of 26RFa by the transmembrane binding pocket of QRFPR. The study also clarifies the similarities and distinctions in the binding pattern of the RF-amide moiety in five RF-amide peptides and the RY-amide segment in neuropeptide Y. These findings deepen our understanding of the RF-amide peptide recognition, aiding in the rational design of drugs targeting QRFPR and other RF-amide peptide receptors.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"58"},"PeriodicalIF":13.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148045/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural basis for recognition of 26RFa by the pyroglutamylated RFamide peptide receptor.\",\"authors\":\"Sanshan Jin, Shimeng Guo, Youwei Xu, Xin Li, Canrong Wu, Xinheng He, Benxun Pan, Wenwen Xin, Heng Zhang, Wen Hu, Yuling Yin, Tianwei Zhang, Kai Wu, Qingning Yuan, H Eric Xu, Xin Xie, Yi Jiang\",\"doi\":\"10.1038/s41421-024-00670-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The neuropeptide 26RFa, a member of the RF-amide peptide family, activates the pyroglutamylated RF-amide peptide receptor (QRFPR), a class A GPCR. The 26RFa/QRFPR system plays critical roles in energy homeostasis, making QRFPR an attractive drug target for treating obesity, diabetes, and eating disorders. However, the lack of structural information has hindered our understanding of the peptide recognition and regulatory mechanism of QRFPR, impeding drug design efforts. In this study, we determined the cryo-EM structure of the G<sub>q</sub>-coupled QRFPR bound to 26RFa. The structure reveals a unique assembly mode of the extracellular region of the receptor and the N-terminus of the peptide, and elucidates the recognition mechanism of the C-terminal heptapeptide of 26RFa by the transmembrane binding pocket of QRFPR. The study also clarifies the similarities and distinctions in the binding pattern of the RF-amide moiety in five RF-amide peptides and the RY-amide segment in neuropeptide Y. These findings deepen our understanding of the RF-amide peptide recognition, aiding in the rational design of drugs targeting QRFPR and other RF-amide peptide receptors.</p>\",\"PeriodicalId\":9674,\"journal\":{\"name\":\"Cell Discovery\",\"volume\":\"10 1\",\"pages\":\"58\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148045/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41421-024-00670-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-024-00670-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
神经肽 26RFa 是射频酰胺肽家族的成员之一,它能激活焦谷氨酰化射频酰胺肽受体(QRFPR),这是一种 A 类 GPCR。26RFa/QRFPR 系统在能量平衡中起着关键作用,因此 QRFPR 成为治疗肥胖症、糖尿病和饮食失调症的一个有吸引力的药物靶点。然而,结构信息的缺乏阻碍了我们对 QRFPR 多肽识别和调控机制的理解,从而阻碍了药物设计工作。在这项研究中,我们测定了与 26RFa 结合的 Gq 偶联 QRFPR 的冷冻电镜结构。该结构揭示了受体胞外区与多肽 N 端独特的组装模式,阐明了 QRFPR 跨膜结合口袋对 26RFa C 端七肽的识别机制。这些发现加深了我们对射频酰胺肽识别的理解,有助于合理设计针对 QRFPR 和其他射频酰胺肽受体的药物。
Structural basis for recognition of 26RFa by the pyroglutamylated RFamide peptide receptor.
The neuropeptide 26RFa, a member of the RF-amide peptide family, activates the pyroglutamylated RF-amide peptide receptor (QRFPR), a class A GPCR. The 26RFa/QRFPR system plays critical roles in energy homeostasis, making QRFPR an attractive drug target for treating obesity, diabetes, and eating disorders. However, the lack of structural information has hindered our understanding of the peptide recognition and regulatory mechanism of QRFPR, impeding drug design efforts. In this study, we determined the cryo-EM structure of the Gq-coupled QRFPR bound to 26RFa. The structure reveals a unique assembly mode of the extracellular region of the receptor and the N-terminus of the peptide, and elucidates the recognition mechanism of the C-terminal heptapeptide of 26RFa by the transmembrane binding pocket of QRFPR. The study also clarifies the similarities and distinctions in the binding pattern of the RF-amide moiety in five RF-amide peptides and the RY-amide segment in neuropeptide Y. These findings deepen our understanding of the RF-amide peptide recognition, aiding in the rational design of drugs targeting QRFPR and other RF-amide peptide receptors.
Cell DiscoveryBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍:
Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research.
Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals.
In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.