Chunsen Zhu, Hao Fang, Houshi Ma, Jinbing Xue, Zeqin Li, Xi Wu, Gangyin Luo
{"title":"利用双淬灭荧光探针高灵敏度检测 SARS-CoV-2 的新方法。","authors":"Chunsen Zhu, Hao Fang, Houshi Ma, Jinbing Xue, Zeqin Li, Xi Wu, Gangyin Luo","doi":"10.1093/bbb/zbae062","DOIUrl":null,"url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected many people around the world; fast and accurate detection of the virus can help control the spread of the virus. Reverse transcription-polymerase chain reaction (RT-PCR) is the gold standard method for SARS-CoV-2 detection. In this study, we improved the RT-PCR by proposing a novel method using dual double-quenched fluorescence probes. We used the improved probes to detect the plasmid DNA and RNA reference materials of SARS-CoV-2, respectively. The results show that, the background fluorescence intensity reduced by 50%, the fluorescence increment increased to 2.8 folds, and the Ct value significantly reduced by 3 or more, indicating that the detection sensitivity increased at least 8 times. In addition, we demonstrated that the improved probes have well performance in detecting SARS-CoV-2, with the minimum concentration of 6.2 copies/µL. This study will help biological companies develop better products for SARS-CoV-2 and other clinical pathogen infection.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for high-sensitivity detection of SARS-CoV-2 using dual double-quenched fluorescence probes.\",\"authors\":\"Chunsen Zhu, Hao Fang, Houshi Ma, Jinbing Xue, Zeqin Li, Xi Wu, Gangyin Luo\",\"doi\":\"10.1093/bbb/zbae062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected many people around the world; fast and accurate detection of the virus can help control the spread of the virus. Reverse transcription-polymerase chain reaction (RT-PCR) is the gold standard method for SARS-CoV-2 detection. In this study, we improved the RT-PCR by proposing a novel method using dual double-quenched fluorescence probes. We used the improved probes to detect the plasmid DNA and RNA reference materials of SARS-CoV-2, respectively. The results show that, the background fluorescence intensity reduced by 50%, the fluorescence increment increased to 2.8 folds, and the Ct value significantly reduced by 3 or more, indicating that the detection sensitivity increased at least 8 times. In addition, we demonstrated that the improved probes have well performance in detecting SARS-CoV-2, with the minimum concentration of 6.2 copies/µL. This study will help biological companies develop better products for SARS-CoV-2 and other clinical pathogen infection.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae062\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae062","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel method for high-sensitivity detection of SARS-CoV-2 using dual double-quenched fluorescence probes.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected many people around the world; fast and accurate detection of the virus can help control the spread of the virus. Reverse transcription-polymerase chain reaction (RT-PCR) is the gold standard method for SARS-CoV-2 detection. In this study, we improved the RT-PCR by proposing a novel method using dual double-quenched fluorescence probes. We used the improved probes to detect the plasmid DNA and RNA reference materials of SARS-CoV-2, respectively. The results show that, the background fluorescence intensity reduced by 50%, the fluorescence increment increased to 2.8 folds, and the Ct value significantly reduced by 3 or more, indicating that the detection sensitivity increased at least 8 times. In addition, we demonstrated that the improved probes have well performance in detecting SARS-CoV-2, with the minimum concentration of 6.2 copies/µL. This study will help biological companies develop better products for SARS-CoV-2 and other clinical pathogen infection.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.