丁香假单胞菌的新型噬菌体揭示了大量潜在的辅助代谢基因。

IF 3.6 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of General Virology Pub Date : 2024-06-01 DOI:10.1099/jgv.0.001990
Chloé Feltin, Julian R Garneau, Cindy E Morris, Annette Bérard, Clara Torres-Barceló
{"title":"丁香假单胞菌的新型噬菌体揭示了大量潜在的辅助代谢基因。","authors":"Chloé Feltin, Julian R Garneau, Cindy E Morris, Annette Bérard, Clara Torres-Barceló","doi":"10.1099/jgv.0.001990","DOIUrl":null,"url":null,"abstract":"<p><p>Relatively few phages that infect plant pathogens have been isolated and investigated. The <i>Pseudomonas syringae</i> species complex is present in various environments, including plants. It can cause major crop diseases, such as bacterial canker on apricot trees. This study presents a collection of 25 unique phage genomes that infect <i>P. syringae</i>. These phages were isolated from apricot orchards with bacterial canker symptoms after enrichment with 21 strains of <i>P. syringae</i>. This collection comprises mostly virulent phages, with only three being temperate. They belong to 14 genera, 11 of which are newly discovered, and 18 new species, revealing great genetic diversity within this collection. Novel DNA packaging systems have been identified bioinformatically in one of the new phage species, but experimental confirmation is required to define the precise mechanism. Additionally, many phage genomes contain numerous potential auxiliary metabolic genes with diversified putative functions. At least three phages encode genes involved in bacterial tellurite resistance, a toxic metalloid. This suggests that viruses could play a role in bacterial stress tolerance. This research emphasizes the significance of continuing the search for new phages in the agricultural ecosystem to unravel novel ecological diversity and new gene functions. This work contributes to the foundation for future fundamental and applied research on phages infecting phytopathogenic bacteria.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256456/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel phages of <i>Pseudomonas syringae</i> unveil numerous potential auxiliary metabolic genes.\",\"authors\":\"Chloé Feltin, Julian R Garneau, Cindy E Morris, Annette Bérard, Clara Torres-Barceló\",\"doi\":\"10.1099/jgv.0.001990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Relatively few phages that infect plant pathogens have been isolated and investigated. The <i>Pseudomonas syringae</i> species complex is present in various environments, including plants. It can cause major crop diseases, such as bacterial canker on apricot trees. This study presents a collection of 25 unique phage genomes that infect <i>P. syringae</i>. These phages were isolated from apricot orchards with bacterial canker symptoms after enrichment with 21 strains of <i>P. syringae</i>. This collection comprises mostly virulent phages, with only three being temperate. They belong to 14 genera, 11 of which are newly discovered, and 18 new species, revealing great genetic diversity within this collection. Novel DNA packaging systems have been identified bioinformatically in one of the new phage species, but experimental confirmation is required to define the precise mechanism. Additionally, many phage genomes contain numerous potential auxiliary metabolic genes with diversified putative functions. At least three phages encode genes involved in bacterial tellurite resistance, a toxic metalloid. This suggests that viruses could play a role in bacterial stress tolerance. This research emphasizes the significance of continuing the search for new phages in the agricultural ecosystem to unravel novel ecological diversity and new gene functions. This work contributes to the foundation for future fundamental and applied research on phages infecting phytopathogenic bacteria.</p>\",\"PeriodicalId\":15880,\"journal\":{\"name\":\"Journal of General Virology\",\"volume\":\"105 6\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256456/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1099/jgv.0.001990\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jgv.0.001990","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对感染植物病原体的噬菌体进行分离和研究的相对较少。丁香假单胞菌复合菌种存在于包括植物在内的各种环境中。它能引起主要的农作物病害,如杏树上的细菌性腐烂病。本研究收集了 25 个感染丁香假单胞菌的独特噬菌体基因组。这些噬菌体是用 21 株 P. syringae 菌株富集后从出现细菌性腐烂病症状的杏园中分离出来的。这些噬菌体主要是毒性噬菌体,其中只有 3 种是温性噬菌体。这些噬菌体属于 14 个属,其中 11 个属是新发现的,还有 18 个新种,揭示了这些噬菌体的遗传多样性。在其中一个新的噬菌体物种中,通过生物信息学方法发现了新的 DNA 包装系统,但要确定其确切的机制还需要实验证实。此外,许多噬菌体基因组包含许多潜在的辅助代谢基因,其推测功能多种多样。至少有三种噬菌体编码涉及细菌抗碲酸盐(一种有毒的类金属)的基因。这表明病毒可能在细菌耐受压力方面发挥作用。这项研究强调了在农业生态系统中继续寻找新噬菌体以揭示新的生态多样性和新的基因功能的重要性。这项工作为今后开展感染植物病原菌的噬菌体的基础研究和应用研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel phages of Pseudomonas syringae unveil numerous potential auxiliary metabolic genes.

Relatively few phages that infect plant pathogens have been isolated and investigated. The Pseudomonas syringae species complex is present in various environments, including plants. It can cause major crop diseases, such as bacterial canker on apricot trees. This study presents a collection of 25 unique phage genomes that infect P. syringae. These phages were isolated from apricot orchards with bacterial canker symptoms after enrichment with 21 strains of P. syringae. This collection comprises mostly virulent phages, with only three being temperate. They belong to 14 genera, 11 of which are newly discovered, and 18 new species, revealing great genetic diversity within this collection. Novel DNA packaging systems have been identified bioinformatically in one of the new phage species, but experimental confirmation is required to define the precise mechanism. Additionally, many phage genomes contain numerous potential auxiliary metabolic genes with diversified putative functions. At least three phages encode genes involved in bacterial tellurite resistance, a toxic metalloid. This suggests that viruses could play a role in bacterial stress tolerance. This research emphasizes the significance of continuing the search for new phages in the agricultural ecosystem to unravel novel ecological diversity and new gene functions. This work contributes to the foundation for future fundamental and applied research on phages infecting phytopathogenic bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of General Virology
Journal of General Virology 医学-病毒学
CiteScore
7.70
自引率
2.60%
发文量
91
审稿时长
3 months
期刊介绍: JOURNAL OF GENERAL VIROLOGY (JGV), a journal of the Society for General Microbiology (SGM), publishes high-calibre research papers with high production standards, giving the journal a worldwide reputation for excellence and attracting an eminent audience.
期刊最新文献
Emergence of highly pathogenic avian influenza viruses H5N1 and H5N5 in white-tailed eagles, 2021-2023. Preliminary evidence that Bunyamwera virus causes severe disease characterized by systemic vascular and multiorgan necrosis in an immunocompromised mouse model. ICTV Virus Taxonomy Profile: Peribunyaviridae 2024. Toscana virus - an emerging Mediterranean arbovirus transmitted by sand flies. Dicer-2 mutations in Aedes aegypti cells lead to a diminished antiviral function against Rift Valley fever virus and Bunyamwera virus infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1