{"title":"与 SERPINA11 相关的新型血清蛋白病--一种围产期致死性疾病。","authors":"Shagun Aggarwal, Venugopal Satidevi Vineeth, Shrutika S. Padwal, Sameer Ahmed Bhat, Arpita Singh, Aditya Kulkarni, Mallikarjun Patil, Karthik Tallapaka, Divya Pasumarthi, Vijayasree Venkatapuram, Pragna Lakshmi Thotakura, Ashwin Dalal, Rashna Bhandari","doi":"10.1111/cge.14564","DOIUrl":null,"url":null,"abstract":"<p><i>SERPINA11</i> is a hitherto poorly characterised gene belonging to Clade A of the SERPIN superfamily, with unknown expression pattern and functional significance. We report a perinatal lethal phenotype in two foetuses from the same family associated with a biallelic loss of function variant in <i>SERPINA11</i>, and provide functional evidence to support its candidature as a Mendelian disorder. The <i>SERPINA11</i> variant-associated foetal phenotype is characterised by gross and histopathological features of extracellular matrix disruption. Western blot and immunofluorescence analyses revealed SERPINA11 expression in multiple mouse tissues, with pronounced expression in the bronchiolar epithelium. We observed a significant decrease in SERPINA11 immunofluorescence in the affected foetal lung compared with a healthy gestation-matched foetus. Protein expression data from HEK293T cell lines following site-directed mutagenesis support the loss of function nature of the variant. Transcriptome analysis from the affected foetal liver indicated the possibility of reduced <i>SERPINA11</i> transcript abundance. This novel serpinopathy appears to be a consequence of the loss of inhibition of serine proteases involved in extracellular matrix remodelling, revealing SERPINA11 as a protease inhibitor critical for embryonic development.</p>","PeriodicalId":10354,"journal":{"name":"Clinical Genetics","volume":"106 3","pages":"367-373"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SERPINA11 related novel serpinopathy – A perinatal lethal disorder\",\"authors\":\"Shagun Aggarwal, Venugopal Satidevi Vineeth, Shrutika S. Padwal, Sameer Ahmed Bhat, Arpita Singh, Aditya Kulkarni, Mallikarjun Patil, Karthik Tallapaka, Divya Pasumarthi, Vijayasree Venkatapuram, Pragna Lakshmi Thotakura, Ashwin Dalal, Rashna Bhandari\",\"doi\":\"10.1111/cge.14564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>SERPINA11</i> is a hitherto poorly characterised gene belonging to Clade A of the SERPIN superfamily, with unknown expression pattern and functional significance. We report a perinatal lethal phenotype in two foetuses from the same family associated with a biallelic loss of function variant in <i>SERPINA11</i>, and provide functional evidence to support its candidature as a Mendelian disorder. The <i>SERPINA11</i> variant-associated foetal phenotype is characterised by gross and histopathological features of extracellular matrix disruption. Western blot and immunofluorescence analyses revealed SERPINA11 expression in multiple mouse tissues, with pronounced expression in the bronchiolar epithelium. We observed a significant decrease in SERPINA11 immunofluorescence in the affected foetal lung compared with a healthy gestation-matched foetus. Protein expression data from HEK293T cell lines following site-directed mutagenesis support the loss of function nature of the variant. Transcriptome analysis from the affected foetal liver indicated the possibility of reduced <i>SERPINA11</i> transcript abundance. This novel serpinopathy appears to be a consequence of the loss of inhibition of serine proteases involved in extracellular matrix remodelling, revealing SERPINA11 as a protease inhibitor critical for embryonic development.</p>\",\"PeriodicalId\":10354,\"journal\":{\"name\":\"Clinical Genetics\",\"volume\":\"106 3\",\"pages\":\"367-373\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cge.14564\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Genetics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cge.14564","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
SERPINA11 related novel serpinopathy – A perinatal lethal disorder
SERPINA11 is a hitherto poorly characterised gene belonging to Clade A of the SERPIN superfamily, with unknown expression pattern and functional significance. We report a perinatal lethal phenotype in two foetuses from the same family associated with a biallelic loss of function variant in SERPINA11, and provide functional evidence to support its candidature as a Mendelian disorder. The SERPINA11 variant-associated foetal phenotype is characterised by gross and histopathological features of extracellular matrix disruption. Western blot and immunofluorescence analyses revealed SERPINA11 expression in multiple mouse tissues, with pronounced expression in the bronchiolar epithelium. We observed a significant decrease in SERPINA11 immunofluorescence in the affected foetal lung compared with a healthy gestation-matched foetus. Protein expression data from HEK293T cell lines following site-directed mutagenesis support the loss of function nature of the variant. Transcriptome analysis from the affected foetal liver indicated the possibility of reduced SERPINA11 transcript abundance. This novel serpinopathy appears to be a consequence of the loss of inhibition of serine proteases involved in extracellular matrix remodelling, revealing SERPINA11 as a protease inhibitor critical for embryonic development.
期刊介绍:
Clinical Genetics links research to the clinic, translating advances in our understanding of the molecular basis of genetic disease for the practising clinical geneticist. The journal publishes high quality research papers, short reports, reviews and mini-reviews that connect medical genetics research with clinical practice.
Topics of particular interest are:
• Linking genetic variations to disease
• Genome rearrangements and disease
• Epigenetics and disease
• The translation of genotype to phenotype
• Genetics of complex disease
• Management/intervention of genetic diseases
• Novel therapies for genetic diseases
• Developmental biology, as it relates to clinical genetics
• Social science research on the psychological and behavioural aspects of living with or being at risk of genetic disease