通过双轴轧制技术开发出均匀度更高的高超导体分数 (Ba, K)Fe2As2 线材

IF 1.3 3区 物理与天体物理 Q4 PHYSICS, APPLIED Physica C-superconductivity and Its Applications Pub Date : 2024-06-02 DOI:10.1016/j.physc.2024.1354520
Hao Xiong , Chao Yao , Wenwen Guo , Peng Yang , Zhihong Ren , Dongliang Wang , Xianping Zhang , Yanwei Ma
{"title":"通过双轴轧制技术开发出均匀度更高的高超导体分数 (Ba, K)Fe2As2 线材","authors":"Hao Xiong ,&nbsp;Chao Yao ,&nbsp;Wenwen Guo ,&nbsp;Peng Yang ,&nbsp;Zhihong Ren ,&nbsp;Dongliang Wang ,&nbsp;Xianping Zhang ,&nbsp;Yanwei Ma","doi":"10.1016/j.physc.2024.1354520","DOIUrl":null,"url":null,"abstract":"<div><p>Iron-based superconductors are regarded as prospective candidates for high magnetic field applications since they have very high upper critical field and low anisotropy. For practical applications, it is important to develop superconducting wires with strong current carrying capability. In this work, Cu/Ag composite sheathed (Ba, K)Fe<sub>2</sub>As<sub>2</sub> (Ba-122) iron-based superconducting wires were fabricated by a two-axial rolling deformation process and a subsequent hot isostatic pressing (HIP) heat treatment. Compared with the previously reported Cu/Ag/Ba-122 wires prepared by groove rolling, the two-axial rolling allowed to use much thinner Cu/Ag composite sheath for wire fabrication, thus greatly increasing the filling factor of superconducting materials by about 5 times to 24 %, and lowering the volume fraction of silver down to 16 % in wires. By a comparative study on the microstructure and superconducting properties between the wires made by two-axial rolling and groove rolling processes, it is found that besides the significantly increased engineering critical current density, the former also exhibits improved homogeneity of mass distribution and uniformity of Ba-122/Ag interfaces, resulting in significantly enhanced <em>n</em>-values over 40 in magnetic fields up to 14 T. Our work suggests that two-axial rolling, combined with HIP processes, presents a promising approach to prepare iron-based superconducting wires with high filling factor, high uniformity and low cost for practical applications.</p></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of high superconductor fraction (Ba, K)Fe2As2 wires with improved uniformity by two-axial rolling\",\"authors\":\"Hao Xiong ,&nbsp;Chao Yao ,&nbsp;Wenwen Guo ,&nbsp;Peng Yang ,&nbsp;Zhihong Ren ,&nbsp;Dongliang Wang ,&nbsp;Xianping Zhang ,&nbsp;Yanwei Ma\",\"doi\":\"10.1016/j.physc.2024.1354520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Iron-based superconductors are regarded as prospective candidates for high magnetic field applications since they have very high upper critical field and low anisotropy. For practical applications, it is important to develop superconducting wires with strong current carrying capability. In this work, Cu/Ag composite sheathed (Ba, K)Fe<sub>2</sub>As<sub>2</sub> (Ba-122) iron-based superconducting wires were fabricated by a two-axial rolling deformation process and a subsequent hot isostatic pressing (HIP) heat treatment. Compared with the previously reported Cu/Ag/Ba-122 wires prepared by groove rolling, the two-axial rolling allowed to use much thinner Cu/Ag composite sheath for wire fabrication, thus greatly increasing the filling factor of superconducting materials by about 5 times to 24 %, and lowering the volume fraction of silver down to 16 % in wires. By a comparative study on the microstructure and superconducting properties between the wires made by two-axial rolling and groove rolling processes, it is found that besides the significantly increased engineering critical current density, the former also exhibits improved homogeneity of mass distribution and uniformity of Ba-122/Ag interfaces, resulting in significantly enhanced <em>n</em>-values over 40 in magnetic fields up to 14 T. Our work suggests that two-axial rolling, combined with HIP processes, presents a promising approach to prepare iron-based superconducting wires with high filling factor, high uniformity and low cost for practical applications.</p></div>\",\"PeriodicalId\":20159,\"journal\":{\"name\":\"Physica C-superconductivity and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica C-superconductivity and Its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921453424000856\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424000856","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

铁基超导体具有很高的上临界磁场和较低的各向异性,因此被视为高磁场应用的潜在候选材料。在实际应用中,开发具有强大载流能力的超导线材非常重要。在这项工作中,通过双轴轧制变形工艺和随后的热等静压(HIP)热处理,制造出了铜/银复合护套(Ba, K)Fe2As2 (Ba-122)铁基超导线材。与之前报道的通过沟槽轧制制备的 Cu/Ag/Ba-122 金属丝相比,双轴轧制工艺可以使用更薄的 Cu/Ag 复合护套来制造金属丝,从而将超导材料的填充因子提高了约 5 倍,达到 24%,并将金属丝中银的体积分数降低到 16%。通过对双轴轧制工艺和沟槽轧制工艺制作的导线的微观结构和超导性能进行比较研究,发现前者除了工程临界电流密度显著提高外,还改善了质量分布的均匀性和 Ba-122/Ag 界面的均匀性,从而在高达 14 T 的磁场中显著提高了超过 40 的 n 值。我们的工作表明,双轴轧制与 HIP 工艺相结合,为制备具有高填充因子、高均匀性和低成本的铁基超导线材提供了一种很有前途的方法,可用于实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of high superconductor fraction (Ba, K)Fe2As2 wires with improved uniformity by two-axial rolling

Iron-based superconductors are regarded as prospective candidates for high magnetic field applications since they have very high upper critical field and low anisotropy. For practical applications, it is important to develop superconducting wires with strong current carrying capability. In this work, Cu/Ag composite sheathed (Ba, K)Fe2As2 (Ba-122) iron-based superconducting wires were fabricated by a two-axial rolling deformation process and a subsequent hot isostatic pressing (HIP) heat treatment. Compared with the previously reported Cu/Ag/Ba-122 wires prepared by groove rolling, the two-axial rolling allowed to use much thinner Cu/Ag composite sheath for wire fabrication, thus greatly increasing the filling factor of superconducting materials by about 5 times to 24 %, and lowering the volume fraction of silver down to 16 % in wires. By a comparative study on the microstructure and superconducting properties between the wires made by two-axial rolling and groove rolling processes, it is found that besides the significantly increased engineering critical current density, the former also exhibits improved homogeneity of mass distribution and uniformity of Ba-122/Ag interfaces, resulting in significantly enhanced n-values over 40 in magnetic fields up to 14 T. Our work suggests that two-axial rolling, combined with HIP processes, presents a promising approach to prepare iron-based superconducting wires with high filling factor, high uniformity and low cost for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
11.80%
发文量
102
审稿时长
66 days
期刊介绍: Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity. The main goal of the journal is to publish: 1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods. 2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance. 3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices. The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.
期刊最新文献
A planar mounted SQUID full-tensor module for magnetoenterogram denoising detection Comparative study on the impact of different E-J relations on the performance of resistive superconducting fault current limiters under high and low impedance faults in cryo-electric aircraft Calculation of AC loss using 2D homogenization method for HTS synchronous condenser rotor and validation Manufacture process and cabling optimization of Bi2212 CICC Design and test of a compact twisted stacked YBCO cable for fusion application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1