{"title":"纠缠的优化取决于黑洞是否极值","authors":"Subhajit Barman, Bibhas Ranjan Majhi","doi":"10.1007/s10714-024-03259-z","DOIUrl":null,"url":null,"abstract":"<div><p>We consider two Unruh-DeWitt detectors interacting with a massless, minimally coupled scalar field in a <span>\\((1+1)\\)</span> dimensional Reissner-Nordström black hole spacetime. In particular, one of the detectors, corresponding to <i>Alice</i>, is moving along an outgoing null trajectory. While the other detector carried by <i>Bob</i> is static. With this set-up, we investigate the entangling condition and the measure of the entanglement, concurrence, in the nonextremal and extremal scenarios. Our observations suggest, as expected, a qualitative similarity in characteristics of the entanglement between these two scenarios. However, we find quantitative differences between the nonextremal and extremal concurrences for a broad range of black hole charges. With moderately large detector transition energy, the extremal background always accounts for the larger entanglement than the nonextremal one. In contrast, with low detector transition energy, entanglement on the nonextremal background can be greater. Therefore, by adjusting the detector transition energy, one can perceive optimum entanglement from either the extremal or the nonextremal background.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03259-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimization of entanglement depends on whether a black hole is extremal\",\"authors\":\"Subhajit Barman, Bibhas Ranjan Majhi\",\"doi\":\"10.1007/s10714-024-03259-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider two Unruh-DeWitt detectors interacting with a massless, minimally coupled scalar field in a <span>\\\\((1+1)\\\\)</span> dimensional Reissner-Nordström black hole spacetime. In particular, one of the detectors, corresponding to <i>Alice</i>, is moving along an outgoing null trajectory. While the other detector carried by <i>Bob</i> is static. With this set-up, we investigate the entangling condition and the measure of the entanglement, concurrence, in the nonextremal and extremal scenarios. Our observations suggest, as expected, a qualitative similarity in characteristics of the entanglement between these two scenarios. However, we find quantitative differences between the nonextremal and extremal concurrences for a broad range of black hole charges. With moderately large detector transition energy, the extremal background always accounts for the larger entanglement than the nonextremal one. In contrast, with low detector transition energy, entanglement on the nonextremal background can be greater. Therefore, by adjusting the detector transition energy, one can perceive optimum entanglement from either the extremal or the nonextremal background.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"56 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-024-03259-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-024-03259-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03259-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Optimization of entanglement depends on whether a black hole is extremal
We consider two Unruh-DeWitt detectors interacting with a massless, minimally coupled scalar field in a \((1+1)\) dimensional Reissner-Nordström black hole spacetime. In particular, one of the detectors, corresponding to Alice, is moving along an outgoing null trajectory. While the other detector carried by Bob is static. With this set-up, we investigate the entangling condition and the measure of the entanglement, concurrence, in the nonextremal and extremal scenarios. Our observations suggest, as expected, a qualitative similarity in characteristics of the entanglement between these two scenarios. However, we find quantitative differences between the nonextremal and extremal concurrences for a broad range of black hole charges. With moderately large detector transition energy, the extremal background always accounts for the larger entanglement than the nonextremal one. In contrast, with low detector transition energy, entanglement on the nonextremal background can be greater. Therefore, by adjusting the detector transition energy, one can perceive optimum entanglement from either the extremal or the nonextremal background.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.