Andreas Hauptmann, Subhadip Mukherjee, Carola-Bibiane Schönlieb, Ferdia Sherry
{"title":"逆问题中的收敛正则化和线性即插即用去噪器","authors":"Andreas Hauptmann, Subhadip Mukherjee, Carola-Bibiane Schönlieb, Ferdia Sherry","doi":"10.1007/s10208-024-09654-x","DOIUrl":null,"url":null,"abstract":"<p>Regularization is necessary when solving inverse problems to ensure the well-posedness of the solution map. Additionally, it is desired that the chosen regularization strategy is convergent in the sense that the solution map converges to a solution of the noise-free operator equation. This provides an important guarantee that stable solutions can be computed for all noise levels and that solutions satisfy the operator equation in the limit of vanishing noise. In recent years, reconstructions in inverse problems are increasingly approached from a data-driven perspective. Despite empirical success, the majority of data-driven approaches do not provide a convergent regularization strategy. One such popular example is given by iterative plug-and-play (PnP) denoising using off-the-shelf image denoisers. These usually provide only convergence of the PnP iterates to a fixed point, under suitable regularity assumptions on the denoiser, rather than convergence of the method as a regularization technique, thatis under vanishing noise and regularization strength. This paper serves two purposes: first, we provide an overview of the classical regularization theory in inverse problems and survey a few notable recent data-driven methods that are provably convergent regularization schemes. We then continue to discuss PnP algorithms and their established convergence guarantees. Subsequently, we consider PnP algorithms with learned linear denoisers and propose a novel spectral filtering technique of the denoiser to control the strength of regularization. Further, by relating the implicit regularization of the denoiser to an explicit regularization functional, we are the first to rigorously show that PnP with a learned linear denoiser leads to a convergent regularization scheme. The theoretical analysis is corroborated by numerical experiments for the classical inverse problem of tomographic image reconstruction.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"47 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergent Regularization in Inverse Problems and Linear Plug-and-Play Denoisers\",\"authors\":\"Andreas Hauptmann, Subhadip Mukherjee, Carola-Bibiane Schönlieb, Ferdia Sherry\",\"doi\":\"10.1007/s10208-024-09654-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Regularization is necessary when solving inverse problems to ensure the well-posedness of the solution map. Additionally, it is desired that the chosen regularization strategy is convergent in the sense that the solution map converges to a solution of the noise-free operator equation. This provides an important guarantee that stable solutions can be computed for all noise levels and that solutions satisfy the operator equation in the limit of vanishing noise. In recent years, reconstructions in inverse problems are increasingly approached from a data-driven perspective. Despite empirical success, the majority of data-driven approaches do not provide a convergent regularization strategy. One such popular example is given by iterative plug-and-play (PnP) denoising using off-the-shelf image denoisers. These usually provide only convergence of the PnP iterates to a fixed point, under suitable regularity assumptions on the denoiser, rather than convergence of the method as a regularization technique, thatis under vanishing noise and regularization strength. This paper serves two purposes: first, we provide an overview of the classical regularization theory in inverse problems and survey a few notable recent data-driven methods that are provably convergent regularization schemes. We then continue to discuss PnP algorithms and their established convergence guarantees. Subsequently, we consider PnP algorithms with learned linear denoisers and propose a novel spectral filtering technique of the denoiser to control the strength of regularization. Further, by relating the implicit regularization of the denoiser to an explicit regularization functional, we are the first to rigorously show that PnP with a learned linear denoiser leads to a convergent regularization scheme. The theoretical analysis is corroborated by numerical experiments for the classical inverse problem of tomographic image reconstruction.</p>\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-024-09654-x\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09654-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Convergent Regularization in Inverse Problems and Linear Plug-and-Play Denoisers
Regularization is necessary when solving inverse problems to ensure the well-posedness of the solution map. Additionally, it is desired that the chosen regularization strategy is convergent in the sense that the solution map converges to a solution of the noise-free operator equation. This provides an important guarantee that stable solutions can be computed for all noise levels and that solutions satisfy the operator equation in the limit of vanishing noise. In recent years, reconstructions in inverse problems are increasingly approached from a data-driven perspective. Despite empirical success, the majority of data-driven approaches do not provide a convergent regularization strategy. One such popular example is given by iterative plug-and-play (PnP) denoising using off-the-shelf image denoisers. These usually provide only convergence of the PnP iterates to a fixed point, under suitable regularity assumptions on the denoiser, rather than convergence of the method as a regularization technique, thatis under vanishing noise and regularization strength. This paper serves two purposes: first, we provide an overview of the classical regularization theory in inverse problems and survey a few notable recent data-driven methods that are provably convergent regularization schemes. We then continue to discuss PnP algorithms and their established convergence guarantees. Subsequently, we consider PnP algorithms with learned linear denoisers and propose a novel spectral filtering technique of the denoiser to control the strength of regularization. Further, by relating the implicit regularization of the denoiser to an explicit regularization functional, we are the first to rigorously show that PnP with a learned linear denoiser leads to a convergent regularization scheme. The theoretical analysis is corroborated by numerical experiments for the classical inverse problem of tomographic image reconstruction.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.