确定 Duttaphrynus melanostictus 皮肤提取物对人类红细胞的毒性作用和代谢扰动。

IF 2.2 4区 医学 Q3 TOXICOLOGY Toxicology Research Pub Date : 2024-06-03 eCollection Date: 2024-06-01 DOI:10.1093/toxres/tfae086
Fatima F Bebal, Akshay D Bagwe, Roshan C D'Souza, Bharatbhushan B Sharma
{"title":"确定 Duttaphrynus melanostictus 皮肤提取物对人类红细胞的毒性作用和代谢扰动。","authors":"Fatima F Bebal, Akshay D Bagwe, Roshan C D'Souza, Bharatbhushan B Sharma","doi":"10.1093/toxres/tfae086","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Skin secretions of toads are widely used in medicine all over the world for their antiviral, anti-infective, and cardiotonic properties. Because these secretions are mostly employed to combat blood parasite infection, it is important to understand their potential toxic effects on human erythrocytes. Therefore, the objective of the current investigation was to elucidate the effects of <i>Duttaphrynus melanostictus</i> (Schneider) skin extracts on the physiology of human erythrocytes.</p><p><strong>Methods: </strong>Toads captured from their natural habitat were separated into three groups according to their body size. Hydroalcoholic extracts of toad skin were prepared by reflux heating. These extracts were then evaluated for their hemolytic and hemoglobin denaturation potential. The effects of the extracts on cytosolic and membrane-bound enzymes of human erythrocytes were assessed.</p><p><strong>Results: </strong>The hemolysis and hemoglobin denaturation caused by these extracts correlated positively with the respective toad sizes. Extracts from medium and large toads led to increased osmotic fragility even at near iso-osmotic concentrations. Biochemical analysis of hemolysate showed that the treatment induced a shift of metabolic flux toward the glutathione pathway. Analysis of membrane-bound enzymes revealed a significant decrease in the activity of Na+/K+ ATPase and acetylcholinesterase. SDS-PAGE analysis of the erythrocyte membrane did not show the band of tropomodulin for the cells treated with 1000 𝜇g/ml extract from large toads.</p><p><strong>Conclusions: </strong>In conclusion, the present study demonstrates that the toxicity of toad skin secretions aggravates with the size of the animal and interferes with the physiology of human erythrocytes, leading to their membrane disruption and rapid lysis.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 3","pages":"tfae086"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145735/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying toxic effects and metabolic perturbations of <i>Duttaphrynus melanostictus</i> skin extracts in human erythrocytes.\",\"authors\":\"Fatima F Bebal, Akshay D Bagwe, Roshan C D'Souza, Bharatbhushan B Sharma\",\"doi\":\"10.1093/toxres/tfae086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Skin secretions of toads are widely used in medicine all over the world for their antiviral, anti-infective, and cardiotonic properties. Because these secretions are mostly employed to combat blood parasite infection, it is important to understand their potential toxic effects on human erythrocytes. Therefore, the objective of the current investigation was to elucidate the effects of <i>Duttaphrynus melanostictus</i> (Schneider) skin extracts on the physiology of human erythrocytes.</p><p><strong>Methods: </strong>Toads captured from their natural habitat were separated into three groups according to their body size. Hydroalcoholic extracts of toad skin were prepared by reflux heating. These extracts were then evaluated for their hemolytic and hemoglobin denaturation potential. The effects of the extracts on cytosolic and membrane-bound enzymes of human erythrocytes were assessed.</p><p><strong>Results: </strong>The hemolysis and hemoglobin denaturation caused by these extracts correlated positively with the respective toad sizes. Extracts from medium and large toads led to increased osmotic fragility even at near iso-osmotic concentrations. Biochemical analysis of hemolysate showed that the treatment induced a shift of metabolic flux toward the glutathione pathway. Analysis of membrane-bound enzymes revealed a significant decrease in the activity of Na+/K+ ATPase and acetylcholinesterase. SDS-PAGE analysis of the erythrocyte membrane did not show the band of tropomodulin for the cells treated with 1000 𝜇g/ml extract from large toads.</p><p><strong>Conclusions: </strong>In conclusion, the present study demonstrates that the toxicity of toad skin secretions aggravates with the size of the animal and interferes with the physiology of human erythrocytes, leading to their membrane disruption and rapid lysis.</p>\",\"PeriodicalId\":105,\"journal\":{\"name\":\"Toxicology Research\",\"volume\":\"13 3\",\"pages\":\"tfae086\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145735/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxres/tfae086\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae086","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:蟾蜍的皮肤分泌物具有抗病毒、抗感染和强心的特性,在世界各地的医学中被广泛使用。由于这些分泌物主要用于对抗血液寄生虫感染,因此了解它们对人类红细胞的潜在毒性作用非常重要。因此,本研究旨在阐明 Duttaphrynus melanostictus (Schneider) 皮肤提取物对人类红细胞生理机能的影响:方法:将从自然栖息地捕获的蟾蜍按体型分为三组。通过回流加热制备蟾蜍皮肤的水醇提取物。然后对这些提取物的溶血和血红蛋白变性潜力进行评估。评估了这些提取物对人类红细胞的细胞膜酶和膜结合酶的影响:结果:这些提取物引起的溶血和血红蛋白变性与蟾蜍的大小呈正相关。中型和大型蟾蜍的提取物即使在接近等渗浓度时也会导致渗透脆性增加。溶血的生化分析表明,处理诱导代谢通量转向谷胱甘肽途径。对膜结合酶的分析表明,Na+/K+ ATP 酶和乙酰胆碱酯酶的活性显著下降。用 1000 𝜇g/ml 大蟾蜍提取物处理的细胞,红细胞膜的 SDS-PAGE 分析未显示出滋养细胞蛋白的条带:总之,本研究表明,蟾蜍皮肤分泌物的毒性会随着动物体型的增大而加剧,并干扰人类红细胞的生理机能,导致红细胞膜破坏和快速裂解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying toxic effects and metabolic perturbations of Duttaphrynus melanostictus skin extracts in human erythrocytes.

Background: Skin secretions of toads are widely used in medicine all over the world for their antiviral, anti-infective, and cardiotonic properties. Because these secretions are mostly employed to combat blood parasite infection, it is important to understand their potential toxic effects on human erythrocytes. Therefore, the objective of the current investigation was to elucidate the effects of Duttaphrynus melanostictus (Schneider) skin extracts on the physiology of human erythrocytes.

Methods: Toads captured from their natural habitat were separated into three groups according to their body size. Hydroalcoholic extracts of toad skin were prepared by reflux heating. These extracts were then evaluated for their hemolytic and hemoglobin denaturation potential. The effects of the extracts on cytosolic and membrane-bound enzymes of human erythrocytes were assessed.

Results: The hemolysis and hemoglobin denaturation caused by these extracts correlated positively with the respective toad sizes. Extracts from medium and large toads led to increased osmotic fragility even at near iso-osmotic concentrations. Biochemical analysis of hemolysate showed that the treatment induced a shift of metabolic flux toward the glutathione pathway. Analysis of membrane-bound enzymes revealed a significant decrease in the activity of Na+/K+ ATPase and acetylcholinesterase. SDS-PAGE analysis of the erythrocyte membrane did not show the band of tropomodulin for the cells treated with 1000 𝜇g/ml extract from large toads.

Conclusions: In conclusion, the present study demonstrates that the toxicity of toad skin secretions aggravates with the size of the animal and interferes with the physiology of human erythrocytes, leading to their membrane disruption and rapid lysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology Research
Toxicology Research TOXICOLOGY-
CiteScore
3.60
自引率
0.00%
发文量
82
期刊介绍: A multi-disciplinary journal covering the best research in both fundamental and applied aspects of toxicology
期刊最新文献
Assessment of the pattern, severity, and outcomes of acute mood stabilizer drug poisoning. miR-361-3p overexpression promotes apoptosis and inflammation by regulating the USP49/IκBα/NF-κB pathway to aggravate sepsis-induced myocardial injury. Unveiling the interspecies correlation and sensitivity factor analysis of rat and mouse acute oral toxicity of antimicrobial agents: first QSTR and QTTR Modeling report. Stress survival and longevity of Caenorhabditis elegans lacking NCS-1. Lipid-core nanocapsules containing simvastatin do not affect the biochemical and hematological indicators of toxicity in rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1