利用机器学习识别 2 型糖尿病亚型:在 420 448 人的关联电子健康记录中进行开发、内部验证、预后验证和用药负担。

IF 3.7 2区 医学 Q2 ENDOCRINOLOGY & METABOLISM BMJ Open Diabetes Research & Care Pub Date : 2024-06-04 DOI:10.1136/bmjdrc-2024-004191
Mehrdad A Mizani, Ashkan Dashtban, Laura Pasea, Qingjia Zeng, Kamlesh Khunti, Jonathan Valabhji, Jil Billy Mamza, He Gao, Tamsin Morris, Amitava Banerjee
{"title":"利用机器学习识别 2 型糖尿病亚型:在 420 448 人的关联电子健康记录中进行开发、内部验证、预后验证和用药负担。","authors":"Mehrdad A Mizani, Ashkan Dashtban, Laura Pasea, Qingjia Zeng, Kamlesh Khunti, Jonathan Valabhji, Jil Billy Mamza, He Gao, Tamsin Morris, Amitava Banerjee","doi":"10.1136/bmjdrc-2024-004191","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>None of the studies of type 2 diabetes (T2D) subtyping to date have used linked population-level data for incident and prevalent T2D, incorporating a diverse set of variables, explainable methods for cluster characterization, or adhered to an established framework. We aimed to develop and validate machine learning (ML)-informed subtypes for type 2 diabetes mellitus (T2D) using nationally representative data.</p><p><strong>Research design and methods: </strong>In population-based electronic health records (2006-2020; Clinical Practice Research Datalink) in individuals ≥18 years with incident T2D (n=420 448), we included factors (n=3787), including demography, history, examination, biomarkers and medications. Using a published framework, we identified subtypes through nine unsupervised ML methods (K-means, K-means++, K-mode, K-prototype, mini-batch, agglomerative hierarchical clustering, Birch, Gaussian mixture models, and consensus clustering). We characterized clusters using intracluster distributions and explainable artificial intelligence (AI) techniques. We evaluated subtypes for (1) internal validity (within dataset; across methods); (2) prognostic validity (prediction for 5-year all-cause mortality, hospitalization and new chronic diseases); and (3) medication burden.</p><p><strong>Results: </strong><i>Development</i>: We identified four T2D subtypes: metabolic, early onset, late onset and cardiometabolic. <i>Internal validity</i>: Subtypes were predicted with high accuracy (F1 score >0.98). <i>Prognostic validity</i>: 5-year all-cause mortality, hospitalization, new chronic disease incidence and medication burden differed across T2D subtypes. Compared with the metabolic subtype, 5-year risks of mortality and hospitalization in incident T2D were highest in late-onset subtype (HR 1.95, 1.85-2.05 and 1.66, 1.58-1.75) and lowest in early-onset subtype (1.18, 1.11-1.27 and 0.85, 0.80-0.90). Incidence of chronic diseases was highest in late-onset subtype and lowest in early-onset subtype. <i>Medications</i>: Compared with the metabolic subtype, after adjusting for age, sex, and pre-T2D medications, late-onset subtype (1.31, 1.28-1.35) and early-onset subtype (0.83, 0.81-0.85) were most and least likely, respectively, to be prescribed medications within 5 years following T2D onset.</p><p><strong>Conclusions: </strong>In the largest study using ML to date in incident T2D, we identified four distinct subtypes, with potential future implications for etiology, therapeutics, and risk prediction.</p>","PeriodicalId":9151,"journal":{"name":"BMJ Open Diabetes Research & Care","volume":"12 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163636/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying subtypes of type 2 diabetes mellitus with machine learning: development, internal validation, prognostic validation and medication burden in linked electronic health records in 420 448 individuals.\",\"authors\":\"Mehrdad A Mizani, Ashkan Dashtban, Laura Pasea, Qingjia Zeng, Kamlesh Khunti, Jonathan Valabhji, Jil Billy Mamza, He Gao, Tamsin Morris, Amitava Banerjee\",\"doi\":\"10.1136/bmjdrc-2024-004191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>None of the studies of type 2 diabetes (T2D) subtyping to date have used linked population-level data for incident and prevalent T2D, incorporating a diverse set of variables, explainable methods for cluster characterization, or adhered to an established framework. We aimed to develop and validate machine learning (ML)-informed subtypes for type 2 diabetes mellitus (T2D) using nationally representative data.</p><p><strong>Research design and methods: </strong>In population-based electronic health records (2006-2020; Clinical Practice Research Datalink) in individuals ≥18 years with incident T2D (n=420 448), we included factors (n=3787), including demography, history, examination, biomarkers and medications. Using a published framework, we identified subtypes through nine unsupervised ML methods (K-means, K-means++, K-mode, K-prototype, mini-batch, agglomerative hierarchical clustering, Birch, Gaussian mixture models, and consensus clustering). We characterized clusters using intracluster distributions and explainable artificial intelligence (AI) techniques. We evaluated subtypes for (1) internal validity (within dataset; across methods); (2) prognostic validity (prediction for 5-year all-cause mortality, hospitalization and new chronic diseases); and (3) medication burden.</p><p><strong>Results: </strong><i>Development</i>: We identified four T2D subtypes: metabolic, early onset, late onset and cardiometabolic. <i>Internal validity</i>: Subtypes were predicted with high accuracy (F1 score >0.98). <i>Prognostic validity</i>: 5-year all-cause mortality, hospitalization, new chronic disease incidence and medication burden differed across T2D subtypes. Compared with the metabolic subtype, 5-year risks of mortality and hospitalization in incident T2D were highest in late-onset subtype (HR 1.95, 1.85-2.05 and 1.66, 1.58-1.75) and lowest in early-onset subtype (1.18, 1.11-1.27 and 0.85, 0.80-0.90). Incidence of chronic diseases was highest in late-onset subtype and lowest in early-onset subtype. <i>Medications</i>: Compared with the metabolic subtype, after adjusting for age, sex, and pre-T2D medications, late-onset subtype (1.31, 1.28-1.35) and early-onset subtype (0.83, 0.81-0.85) were most and least likely, respectively, to be prescribed medications within 5 years following T2D onset.</p><p><strong>Conclusions: </strong>In the largest study using ML to date in incident T2D, we identified four distinct subtypes, with potential future implications for etiology, therapeutics, and risk prediction.</p>\",\"PeriodicalId\":9151,\"journal\":{\"name\":\"BMJ Open Diabetes Research & Care\",\"volume\":\"12 3\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163636/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMJ Open Diabetes Research & Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/bmjdrc-2024-004191\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open Diabetes Research & Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bmjdrc-2024-004191","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

导言:迄今为止,有关 2 型糖尿病(T2D)亚型划分的研究均未使用相关人群水平的 T2D 发病和流行数据,也未纳入各种变量、可解释的聚类特征描述方法或遵循既定框架。我们的目标是利用具有全国代表性的数据,开发并验证机器学习(ML)信息的2型糖尿病(T2D)亚型:在基于人群的电子健康记录(2006-2020 年;临床实践研究数据链)中,我们纳入了年龄≥18 岁的 T2D 患者(n=420 448)的因素(n=3787),包括人口统计学、病史、检查、生物标志物和药物。利用已发表的框架,我们通过九种无监督 ML 方法(K-means、K-means++、K-mode、K-prototype、mini-batch、agglomerative hierarchical clustering、Birch、高斯混合模型和共识聚类)确定了亚型。我们使用聚类内分布和可解释人工智能(AI)技术来描述聚类的特征。我们对以下方面进行了评估:(1) 内部有效性(数据集内部;跨方法);(2) 预后有效性(预测 5 年全因死亡率、住院率和新发慢性病);(3) 药物负担:发展:我们确定了四种 T2D 亚型:代谢型、早发型、晚发型和心脏代谢型。内部有效性:亚型预测准确率高(F1 分数大于 0.98)。预后有效性:不同 T2D 亚型的 5 年全因死亡率、住院率、新发慢性病发病率和用药负担各不相同。与代谢亚型相比,晚发亚型 T2D 患者的 5 年死亡和住院风险最高(HR 1.95,1.85-2.05 和 1.66,1.58-1.75),早发亚型最低(1.18,1.11-1.27 和 0.85,0.80-0.90)。慢性疾病的发病率在晚发性亚型中最高,在早发性亚型中最低。药物与代谢亚型相比,在调整年龄、性别和T2D发病前用药后,晚发亚型(1.31,1.28-1.35)和早发亚型(0.83,0.81-0.85)在T2D发病后5年内分别最有可能和最不可能接受药物治疗:结论:在迄今为止使用ML对T2D事件进行的最大规模研究中,我们发现了四种不同的亚型,这对病因学、治疗学和风险预测具有潜在的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying subtypes of type 2 diabetes mellitus with machine learning: development, internal validation, prognostic validation and medication burden in linked electronic health records in 420 448 individuals.

Introduction: None of the studies of type 2 diabetes (T2D) subtyping to date have used linked population-level data for incident and prevalent T2D, incorporating a diverse set of variables, explainable methods for cluster characterization, or adhered to an established framework. We aimed to develop and validate machine learning (ML)-informed subtypes for type 2 diabetes mellitus (T2D) using nationally representative data.

Research design and methods: In population-based electronic health records (2006-2020; Clinical Practice Research Datalink) in individuals ≥18 years with incident T2D (n=420 448), we included factors (n=3787), including demography, history, examination, biomarkers and medications. Using a published framework, we identified subtypes through nine unsupervised ML methods (K-means, K-means++, K-mode, K-prototype, mini-batch, agglomerative hierarchical clustering, Birch, Gaussian mixture models, and consensus clustering). We characterized clusters using intracluster distributions and explainable artificial intelligence (AI) techniques. We evaluated subtypes for (1) internal validity (within dataset; across methods); (2) prognostic validity (prediction for 5-year all-cause mortality, hospitalization and new chronic diseases); and (3) medication burden.

Results: Development: We identified four T2D subtypes: metabolic, early onset, late onset and cardiometabolic. Internal validity: Subtypes were predicted with high accuracy (F1 score >0.98). Prognostic validity: 5-year all-cause mortality, hospitalization, new chronic disease incidence and medication burden differed across T2D subtypes. Compared with the metabolic subtype, 5-year risks of mortality and hospitalization in incident T2D were highest in late-onset subtype (HR 1.95, 1.85-2.05 and 1.66, 1.58-1.75) and lowest in early-onset subtype (1.18, 1.11-1.27 and 0.85, 0.80-0.90). Incidence of chronic diseases was highest in late-onset subtype and lowest in early-onset subtype. Medications: Compared with the metabolic subtype, after adjusting for age, sex, and pre-T2D medications, late-onset subtype (1.31, 1.28-1.35) and early-onset subtype (0.83, 0.81-0.85) were most and least likely, respectively, to be prescribed medications within 5 years following T2D onset.

Conclusions: In the largest study using ML to date in incident T2D, we identified four distinct subtypes, with potential future implications for etiology, therapeutics, and risk prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMJ Open Diabetes Research & Care
BMJ Open Diabetes Research & Care Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
9.30
自引率
2.40%
发文量
123
审稿时长
18 weeks
期刊介绍: BMJ Open Diabetes Research & Care is an open access journal committed to publishing high-quality, basic and clinical research articles regarding type 1 and type 2 diabetes, and associated complications. Only original content will be accepted, and submissions are subject to rigorous peer review to ensure the publication of high-quality — and evidence-based — original research articles.
期刊最新文献
Clinical utility of novel diabetes subgroups in predicting vascular complications and mortality: up to 25 years of follow-up of the HUNT Study. Association between RDW-SD and prognosis across glycemic status in patients with dilated cardiomyopathy. Widening the phenotypic spectrum caused by pathogenic PDX1 variants in individuals with neonatal diabetes. Identification of atypical pediatric diabetes mellitus cases using electronic medical records. Type 2 diabetes complications in ethnic minority compared with European host populations: a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1