双(2-氯异丙基)醚。

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Toxicology and Industrial Health Pub Date : 2024-10-01 Epub Date: 2024-06-05 DOI:10.1177/07482337241245745
{"title":"双(2-氯异丙基)醚。","authors":"","doi":"10.1177/07482337241245745","DOIUrl":null,"url":null,"abstract":"<p><p>Bis-(2-Chloroisopropyl) ether (BCIPE) was used as a solvent for fats, greases, paint, varnish removers, and in spotting and cleaning solutions. However, BCIPE has not been commercially manufactured or used for numerous years. In experimental animal studies, BCIPE is moderately toxic following acute oral, dermal, and inhalation routes of exposure. BCIPE is a severe eye irritant but not a dermal irritant or dermal sensitizer. BCIPE was not genotoxic or mutagenic in in vitro and in vivo assays; it was not toxic in a 3-generation reproductive dietary study in rats. Short-term, repeated inhalation and oral exposure in rats produced increased liver and kidney weights and congestion; dermal exposure in rabbits did not produce any observable adverse effects. BCIPE did not produce a statistically significant increase in tumors in two different 2-year dietary studies in mice and rats. In mice, technical grade BCIPE produced increased incidences of alveolar/bronchiolar adenomas in females, hepatocellular carcinomas in males, and a low incidence of forestomach hyperplasia (in both sexes at the high-dose). Further investigation with technical grade BCIPE concluded that these effects were species- and dose-specific with limited, if any, relevance to humans. The NOAEL of 400 ppm (15 mg/kg/day) from the 2-year dietary study in female rats was considered the point of departure for the health-based WEEL derivation. After adjustment for duration of exposure, interindividual variability, and intraindividual variability, an 8-h time-weighted average (TWA) WEEL value of 3 ppm (21 mg/m<sup>3</sup>) was derived. This exposure limit is expected to provide a significant margin of safety against any potential adverse health effects in workers.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"497-503"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bis-(2-Chloroisopropyl) ether.\",\"authors\":\"\",\"doi\":\"10.1177/07482337241245745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bis-(2-Chloroisopropyl) ether (BCIPE) was used as a solvent for fats, greases, paint, varnish removers, and in spotting and cleaning solutions. However, BCIPE has not been commercially manufactured or used for numerous years. In experimental animal studies, BCIPE is moderately toxic following acute oral, dermal, and inhalation routes of exposure. BCIPE is a severe eye irritant but not a dermal irritant or dermal sensitizer. BCIPE was not genotoxic or mutagenic in in vitro and in vivo assays; it was not toxic in a 3-generation reproductive dietary study in rats. Short-term, repeated inhalation and oral exposure in rats produced increased liver and kidney weights and congestion; dermal exposure in rabbits did not produce any observable adverse effects. BCIPE did not produce a statistically significant increase in tumors in two different 2-year dietary studies in mice and rats. In mice, technical grade BCIPE produced increased incidences of alveolar/bronchiolar adenomas in females, hepatocellular carcinomas in males, and a low incidence of forestomach hyperplasia (in both sexes at the high-dose). Further investigation with technical grade BCIPE concluded that these effects were species- and dose-specific with limited, if any, relevance to humans. The NOAEL of 400 ppm (15 mg/kg/day) from the 2-year dietary study in female rats was considered the point of departure for the health-based WEEL derivation. After adjustment for duration of exposure, interindividual variability, and intraindividual variability, an 8-h time-weighted average (TWA) WEEL value of 3 ppm (21 mg/m<sup>3</sup>) was derived. This exposure limit is expected to provide a significant margin of safety against any potential adverse health effects in workers.</p>\",\"PeriodicalId\":23171,\"journal\":{\"name\":\"Toxicology and Industrial Health\",\"volume\":\" \",\"pages\":\"497-503\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and Industrial Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/07482337241245745\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and Industrial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/07482337241245745","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

双(2-氯异丙基)醚(BCIPE)曾用作脂肪、油脂、油漆和清漆去除剂的溶剂,也可用于斑点处理和清洁溶液。不过,BCIPE 已多年未投入商业生产或使用。在动物实验研究中,急性经口、皮肤和吸入途径接触 BCIPE 后会产生中度毒性。BCIPE 对眼睛有严重刺激性,但对皮肤没有刺激性,也不会引起皮肤过敏。在体外和体内试验中,BCIPE 不具有遗传毒性或诱变性;在对大鼠进行的三代生殖膳食研究中,BCIPE 没有毒性。短期、反复吸入和口服 BCIPE 会导致大鼠肝脏和肾脏重量增加和充血;兔子皮肤接触 BCIPE 不会产生任何可观察到的不良影响。在对小鼠和大鼠进行的两项为期两年的不同膳食研究中,BCIPE 不会导致肿瘤出现统计学意义上的显著增加。在小鼠中,工业级 BCIPE 会增加雌性小鼠肺泡/支气管腺瘤的发病率,增加雄性小鼠肝细胞癌的发病率,并降低森林胃增生的发病率(高剂量时雌雄小鼠均会发生)。使用工业级 BCIPE 进行的进一步调查得出结论,这些影响是物种和剂量特异性的,与人类的相关性有限(如果有的话)。雌性大鼠为期两年的膳食研究得出的无观测不良效应水平(NOAEL)为 400 ppm(15 毫克/千克/天),这被认为是推导基于健康的 WEEL 的出发点。在对接触时间、个体间差异和个体内差异进行调整后,得出 8 小时时间加权平均值 (TWA) WEEL 值为 3 ppm(21 mg/m3)。预计这一接触限值将为工人的健康提供很大的安全边际,以避免任何潜在的不良健康影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bis-(2-Chloroisopropyl) ether.

Bis-(2-Chloroisopropyl) ether (BCIPE) was used as a solvent for fats, greases, paint, varnish removers, and in spotting and cleaning solutions. However, BCIPE has not been commercially manufactured or used for numerous years. In experimental animal studies, BCIPE is moderately toxic following acute oral, dermal, and inhalation routes of exposure. BCIPE is a severe eye irritant but not a dermal irritant or dermal sensitizer. BCIPE was not genotoxic or mutagenic in in vitro and in vivo assays; it was not toxic in a 3-generation reproductive dietary study in rats. Short-term, repeated inhalation and oral exposure in rats produced increased liver and kidney weights and congestion; dermal exposure in rabbits did not produce any observable adverse effects. BCIPE did not produce a statistically significant increase in tumors in two different 2-year dietary studies in mice and rats. In mice, technical grade BCIPE produced increased incidences of alveolar/bronchiolar adenomas in females, hepatocellular carcinomas in males, and a low incidence of forestomach hyperplasia (in both sexes at the high-dose). Further investigation with technical grade BCIPE concluded that these effects were species- and dose-specific with limited, if any, relevance to humans. The NOAEL of 400 ppm (15 mg/kg/day) from the 2-year dietary study in female rats was considered the point of departure for the health-based WEEL derivation. After adjustment for duration of exposure, interindividual variability, and intraindividual variability, an 8-h time-weighted average (TWA) WEEL value of 3 ppm (21 mg/m3) was derived. This exposure limit is expected to provide a significant margin of safety against any potential adverse health effects in workers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
72
审稿时长
4 months
期刊介绍: Toxicology & Industrial Health is a journal dedicated to reporting results of basic and applied toxicological research with direct application to industrial/occupational health. Such research includes the fields of genetic and cellular toxicology and risk assessment associated with hazardous wastes and groundwater.
期刊最新文献
Transcriptome analysis reveals the molecular mechanisms of neonicotinoid acetamiprid in Leydig cells. Perfluorooctane sulfonate causes HK-2 cell injury through ferroptosis and endoplasmic reticulum stress pathways. Wnt5a promotes Kupffer cell activation in trichloroethylene-induced immune liver injury. Metabolomics reveals that phosphatidylethanolamine can alleviate the toxicity of silica nanoparticles in human lung A549 cells. DEHP impairs the oxidative stress response and disrupts trace element and mineral metabolism within the mitochondria of detoxification organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1