{"title":"非牛顿流体构成模型综述","authors":"HongGuang Sun, Yuehua Jiang, Yong Zhang, Lijuan Jiang","doi":"10.1007/s13540-024-00294-0","DOIUrl":null,"url":null,"abstract":"<p>Various constitutive models have been proposed to quantify a wide range of non-Newtonian fluids, but there is lack of a systematic classification and evaluation of these competing models, such as the quantitative comparison between the classical integer-order constitutive models and the newly proposed fractional derivative equations for non-Newtonian fluids. This study reviews constitutive equation models for non-Newtonian fluids, including time-independent fluids, viscoelastic fluids, and time-dependent fluids. A comparison between fractional derivative non-Newtonian fluid constitutive equations and traditional constitutive equations is also provided. Results show that the space fractional derivative model is equivalent to some classical constitutive models under reasonable assumptions. Further discussions are made from the perspective of the industrial and biomedical applications of non-Newtonian fluids. Advantages and limitations of the constitutive models are also explored to help users to select proper models for real-world applications.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"51 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of constitutive models for non-Newtonian fluids\",\"authors\":\"HongGuang Sun, Yuehua Jiang, Yong Zhang, Lijuan Jiang\",\"doi\":\"10.1007/s13540-024-00294-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Various constitutive models have been proposed to quantify a wide range of non-Newtonian fluids, but there is lack of a systematic classification and evaluation of these competing models, such as the quantitative comparison between the classical integer-order constitutive models and the newly proposed fractional derivative equations for non-Newtonian fluids. This study reviews constitutive equation models for non-Newtonian fluids, including time-independent fluids, viscoelastic fluids, and time-dependent fluids. A comparison between fractional derivative non-Newtonian fluid constitutive equations and traditional constitutive equations is also provided. Results show that the space fractional derivative model is equivalent to some classical constitutive models under reasonable assumptions. Further discussions are made from the perspective of the industrial and biomedical applications of non-Newtonian fluids. Advantages and limitations of the constitutive models are also explored to help users to select proper models for real-world applications.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00294-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00294-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A review of constitutive models for non-Newtonian fluids
Various constitutive models have been proposed to quantify a wide range of non-Newtonian fluids, but there is lack of a systematic classification and evaluation of these competing models, such as the quantitative comparison between the classical integer-order constitutive models and the newly proposed fractional derivative equations for non-Newtonian fluids. This study reviews constitutive equation models for non-Newtonian fluids, including time-independent fluids, viscoelastic fluids, and time-dependent fluids. A comparison between fractional derivative non-Newtonian fluid constitutive equations and traditional constitutive equations is also provided. Results show that the space fractional derivative model is equivalent to some classical constitutive models under reasonable assumptions. Further discussions are made from the perspective of the industrial and biomedical applications of non-Newtonian fluids. Advantages and limitations of the constitutive models are also explored to help users to select proper models for real-world applications.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.