{"title":"处理对称性的统一框架","authors":"Jasper van Doornmalen, Christopher Hojny","doi":"10.1007/s10107-024-02102-2","DOIUrl":null,"url":null,"abstract":"<p>Handling symmetries in optimization problems is essential for devising efficient solution methods. In this article, we present a general framework that captures many of the already existing symmetry handling methods. While these methods are mostly discussed independently from each other, our framework allows to apply different methods simultaneously and thus outperforming their individual effect. Moreover, most existing symmetry handling methods only apply to binary variables. Our framework allows to easily generalize these methods to general variable types. Numerical experiments confirm that our novel framework is superior to the state-of-the-art symmetry handling methods as implemented in the solver <span>SCIP</span> on a broad set of instances.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified framework for symmetry handling\",\"authors\":\"Jasper van Doornmalen, Christopher Hojny\",\"doi\":\"10.1007/s10107-024-02102-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Handling symmetries in optimization problems is essential for devising efficient solution methods. In this article, we present a general framework that captures many of the already existing symmetry handling methods. While these methods are mostly discussed independently from each other, our framework allows to apply different methods simultaneously and thus outperforming their individual effect. Moreover, most existing symmetry handling methods only apply to binary variables. Our framework allows to easily generalize these methods to general variable types. Numerical experiments confirm that our novel framework is superior to the state-of-the-art symmetry handling methods as implemented in the solver <span>SCIP</span> on a broad set of instances.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02102-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02102-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Handling symmetries in optimization problems is essential for devising efficient solution methods. In this article, we present a general framework that captures many of the already existing symmetry handling methods. While these methods are mostly discussed independently from each other, our framework allows to apply different methods simultaneously and thus outperforming their individual effect. Moreover, most existing symmetry handling methods only apply to binary variables. Our framework allows to easily generalize these methods to general variable types. Numerical experiments confirm that our novel framework is superior to the state-of-the-art symmetry handling methods as implemented in the solver SCIP on a broad set of instances.