二氧化碳发电循环的热经济分析

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2024-06-05 DOI:10.1002/aic.18502
Duoli Chen, John P. O'Connell, Warren D. Seider
{"title":"二氧化碳发电循环的热经济分析","authors":"Duoli Chen, John P. O'Connell, Warren D. Seider","doi":"10.1002/aic.18502","DOIUrl":null,"url":null,"abstract":"The second-law analysis evaluates the irreversibilities of a process. Systematic study of the relationship between thermodynamic efficiency and process modifications enhances process synthesis. The Allam cycle is an oxy-fuel combustion cycle with nearly complete carbon capture that offers greater efficiency than current electricity generating systems. This study applies lost work analysis to the original Allam cycle and three modifications to obtain the distribution of irreversibilities and the effects of different configurations among potential process improvements for more sustainable power generation. The major inefficiencies are from the combustors and heat exchangers. We also examine the economic profitability of the alternatives. The largest equipment costs are for the turbines, compressors, and recuperators. We find that improving efficiency leads to less economic return; a configuration with partial compression has the highest efficiency, while the original Allam cycle has the highest profitability. We discuss how to resolve this apparent conflict between sustainability and profitability.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoeconomic analysis of sCO2 power cycles\",\"authors\":\"Duoli Chen, John P. O'Connell, Warren D. Seider\",\"doi\":\"10.1002/aic.18502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The second-law analysis evaluates the irreversibilities of a process. Systematic study of the relationship between thermodynamic efficiency and process modifications enhances process synthesis. The Allam cycle is an oxy-fuel combustion cycle with nearly complete carbon capture that offers greater efficiency than current electricity generating systems. This study applies lost work analysis to the original Allam cycle and three modifications to obtain the distribution of irreversibilities and the effects of different configurations among potential process improvements for more sustainable power generation. The major inefficiencies are from the combustors and heat exchangers. We also examine the economic profitability of the alternatives. The largest equipment costs are for the turbines, compressors, and recuperators. We find that improving efficiency leads to less economic return; a configuration with partial compression has the highest efficiency, while the original Allam cycle has the highest profitability. We discuss how to resolve this apparent conflict between sustainability and profitability.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18502\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18502","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

第二定律分析评估工艺的不可逆性。对热力学效率和工艺修改之间的关系进行系统研究,可以提高工艺的综合性。Allam 循环是一种全氧燃烧循环,几乎可以完全捕获碳,其效率高于当前的发电系统。本研究对原有的 Allam 循环和三种改良方法进行了损失功分析,以获得不可逆性的分布情况以及不同配置对潜在工艺改进的影响,从而实现更可持续的发电。主要的低效率来自燃烧器和热交换器。我们还考察了替代方案的经济效益。涡轮机、压缩机和换热器的设备成本最高。我们发现,提高效率会降低经济收益;部分压缩的配置效率最高,而原有的阿兰循环盈利能力最高。我们讨论了如何解决可持续性和盈利性之间的明显冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermoeconomic analysis of sCO2 power cycles
The second-law analysis evaluates the irreversibilities of a process. Systematic study of the relationship between thermodynamic efficiency and process modifications enhances process synthesis. The Allam cycle is an oxy-fuel combustion cycle with nearly complete carbon capture that offers greater efficiency than current electricity generating systems. This study applies lost work analysis to the original Allam cycle and three modifications to obtain the distribution of irreversibilities and the effects of different configurations among potential process improvements for more sustainable power generation. The major inefficiencies are from the combustors and heat exchangers. We also examine the economic profitability of the alternatives. The largest equipment costs are for the turbines, compressors, and recuperators. We find that improving efficiency leads to less economic return; a configuration with partial compression has the highest efficiency, while the original Allam cycle has the highest profitability. We discuss how to resolve this apparent conflict between sustainability and profitability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
Modeling and simulation of bi‐continuous jammed emulsion membrane reactors for enhanced biphasic enzymatic reactions Multiscale screening of metal-organic frameworks for one-step ethylene purification in pressure-swing adsorption processes Mechanism and kinetics study of the chemically initiated oxidative polymerization of hexafluoropropylene Carbon dioxide capture by aqueous glucosamine solutions: Pilot plant measurements and a theoretical study Tuning the CO2 hydrogenation activity and selectivity of TiO2 nanorods supported Rh catalyst via secondary-metals addition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1