E. N. Sheftel, E. V. Harin, V. A. Tedzhetov, K. N. Rozanov, S. Yu. Bobrovskii, G. Sh. Usmanova
{"title":"FeZrN 薄膜:静态和微波磁性能","authors":"E. N. Sheftel, E. V. Harin, V. A. Tedzhetov, K. N. Rozanov, S. Yu. Bobrovskii, G. Sh. Usmanova","doi":"10.1134/S2075113324700187","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The phase and structural state, parameters of the magnetic microstructure, and static and microwave magnetic properties of the Fe<sub>81–74</sub>Zr<sub>2–5</sub>N<sub>17–21</sub> films synthesized by reactive magnetron deposition have been studied. It has been established that, as the Zr and N contents increase, the film structure changes from the so-called mixed structure (amorphous and nanocrystalline represented by the Fe-based solid solution supersaturated with zirconium and nitrogen in the bcc modification and the fcc nitride phase) to the X-ray amorphous one. The interplay of the static magnetic properties and the parameters of the stochastic magnetic structure with the effective real permeability μ' at frequencies of up to 3 GHz has been examined. It is shown that the stochastic magnetic structure determines the dynamic magnetic properties.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 3","pages":"760 - 765"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FeZrN Films: Static and Microwave Magnetic Properties\",\"authors\":\"E. N. Sheftel, E. V. Harin, V. A. Tedzhetov, K. N. Rozanov, S. Yu. Bobrovskii, G. Sh. Usmanova\",\"doi\":\"10.1134/S2075113324700187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—The phase and structural state, parameters of the magnetic microstructure, and static and microwave magnetic properties of the Fe<sub>81–74</sub>Zr<sub>2–5</sub>N<sub>17–21</sub> films synthesized by reactive magnetron deposition have been studied. It has been established that, as the Zr and N contents increase, the film structure changes from the so-called mixed structure (amorphous and nanocrystalline represented by the Fe-based solid solution supersaturated with zirconium and nitrogen in the bcc modification and the fcc nitride phase) to the X-ray amorphous one. The interplay of the static magnetic properties and the parameters of the stochastic magnetic structure with the effective real permeability μ' at frequencies of up to 3 GHz has been examined. It is shown that the stochastic magnetic structure determines the dynamic magnetic properties.</p>\",\"PeriodicalId\":586,\"journal\":{\"name\":\"Inorganic Materials: Applied Research\",\"volume\":\"15 3\",\"pages\":\"760 - 765\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials: Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2075113324700187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
FeZrN Films: Static and Microwave Magnetic Properties
Abstract—The phase and structural state, parameters of the magnetic microstructure, and static and microwave magnetic properties of the Fe81–74Zr2–5N17–21 films synthesized by reactive magnetron deposition have been studied. It has been established that, as the Zr and N contents increase, the film structure changes from the so-called mixed structure (amorphous and nanocrystalline represented by the Fe-based solid solution supersaturated with zirconium and nitrogen in the bcc modification and the fcc nitride phase) to the X-ray amorphous one. The interplay of the static magnetic properties and the parameters of the stochastic magnetic structure with the effective real permeability μ' at frequencies of up to 3 GHz has been examined. It is shown that the stochastic magnetic structure determines the dynamic magnetic properties.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.