M. S. Boldin, A. A. Popov, A. V. Nokhrin, V. N. Chuvil’deev, A. A. Murashov, G. V. Shcherbak, N. Yu. Tabachkova
{"title":"电脉冲等离子体烧结中的温度-速率制度对氧化铝微观结构和机械性能的影响:烧结机制的作用","authors":"M. S. Boldin, A. A. Popov, A. V. Nokhrin, V. N. Chuvil’deev, A. A. Murashov, G. V. Shcherbak, N. Yu. Tabachkova","doi":"10.1134/S2075113324700084","DOIUrl":null,"url":null,"abstract":"<p>The temperature and heating rate affecting the shrinkage kinetics are studied for cylindrical workpieces obtained from submicron and fine aluminum oxide powder. The studies involve the powder from three batches: (1) submicron (~0.15 µm) α-Al<sub>2</sub>O<sub>3</sub> powder, (2) submicron (~0.2 µm) α-Al<sub>2</sub>O<sub>3</sub> powder having an amorphous layer deposited on the particle surface, and (3) fine (~1 µm) α-Al<sub>2</sub>O<sub>3</sub> powder. It is established that the powder particles in all batches has a monocrystalline structure. The powder workpieces are sintered using the electric pulse (spark) plasma sintering (SPS) technique. The shrinkage curves are analyzed using the Young–Cutler and the Coble models. The kinetics of sintering workpieces is shown to depend on diffusion developing between the powder particles. The sintering kinetics of workpieces made from submicron powder depends on intensity of the grain-boundary diffusion. In the sintering workpieces made of finely dispersed powder, the kinetics is additionally dependent on simultaneously developing volumetric and grain-boundary diffusion. It is established that the presence of an amorphous layer on the surface of particulate α-Al<sub>2</sub>O<sub>3</sub> having submicron size affects the rate of migration of grain interfaces and the parameters of the Coble equation at the final SPS stage. It is assumed that the accelerated growth of grains and an increase in the microhardness of samples obtained through sintering workpieces made from submicron powder with an amorphous layer on the particle surface is caused by a higher density of defects at the grain interfaces. The elevated density of defects at grain interfaces can result from crystallization of the amorphous layer.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 3","pages":"654 - 674"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Temperature-Rate Regimes in Electric Pulse Plasma Sintering on Microstructure and Mechanical Properties of Aluminum Oxide: The Role of Sintering Mechanisms\",\"authors\":\"M. S. Boldin, A. A. Popov, A. V. Nokhrin, V. N. Chuvil’deev, A. A. Murashov, G. V. Shcherbak, N. Yu. Tabachkova\",\"doi\":\"10.1134/S2075113324700084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The temperature and heating rate affecting the shrinkage kinetics are studied for cylindrical workpieces obtained from submicron and fine aluminum oxide powder. The studies involve the powder from three batches: (1) submicron (~0.15 µm) α-Al<sub>2</sub>O<sub>3</sub> powder, (2) submicron (~0.2 µm) α-Al<sub>2</sub>O<sub>3</sub> powder having an amorphous layer deposited on the particle surface, and (3) fine (~1 µm) α-Al<sub>2</sub>O<sub>3</sub> powder. It is established that the powder particles in all batches has a monocrystalline structure. The powder workpieces are sintered using the electric pulse (spark) plasma sintering (SPS) technique. The shrinkage curves are analyzed using the Young–Cutler and the Coble models. The kinetics of sintering workpieces is shown to depend on diffusion developing between the powder particles. The sintering kinetics of workpieces made from submicron powder depends on intensity of the grain-boundary diffusion. In the sintering workpieces made of finely dispersed powder, the kinetics is additionally dependent on simultaneously developing volumetric and grain-boundary diffusion. It is established that the presence of an amorphous layer on the surface of particulate α-Al<sub>2</sub>O<sub>3</sub> having submicron size affects the rate of migration of grain interfaces and the parameters of the Coble equation at the final SPS stage. It is assumed that the accelerated growth of grains and an increase in the microhardness of samples obtained through sintering workpieces made from submicron powder with an amorphous layer on the particle surface is caused by a higher density of defects at the grain interfaces. The elevated density of defects at grain interfaces can result from crystallization of the amorphous layer.</p>\",\"PeriodicalId\":586,\"journal\":{\"name\":\"Inorganic Materials: Applied Research\",\"volume\":\"15 3\",\"pages\":\"654 - 674\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials: Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2075113324700084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of the Temperature-Rate Regimes in Electric Pulse Plasma Sintering on Microstructure and Mechanical Properties of Aluminum Oxide: The Role of Sintering Mechanisms
The temperature and heating rate affecting the shrinkage kinetics are studied for cylindrical workpieces obtained from submicron and fine aluminum oxide powder. The studies involve the powder from three batches: (1) submicron (~0.15 µm) α-Al2O3 powder, (2) submicron (~0.2 µm) α-Al2O3 powder having an amorphous layer deposited on the particle surface, and (3) fine (~1 µm) α-Al2O3 powder. It is established that the powder particles in all batches has a monocrystalline structure. The powder workpieces are sintered using the electric pulse (spark) plasma sintering (SPS) technique. The shrinkage curves are analyzed using the Young–Cutler and the Coble models. The kinetics of sintering workpieces is shown to depend on diffusion developing between the powder particles. The sintering kinetics of workpieces made from submicron powder depends on intensity of the grain-boundary diffusion. In the sintering workpieces made of finely dispersed powder, the kinetics is additionally dependent on simultaneously developing volumetric and grain-boundary diffusion. It is established that the presence of an amorphous layer on the surface of particulate α-Al2O3 having submicron size affects the rate of migration of grain interfaces and the parameters of the Coble equation at the final SPS stage. It is assumed that the accelerated growth of grains and an increase in the microhardness of samples obtained through sintering workpieces made from submicron powder with an amorphous layer on the particle surface is caused by a higher density of defects at the grain interfaces. The elevated density of defects at grain interfaces can result from crystallization of the amorphous layer.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.