A. V. Terent’ev, Yu. V. Blagoveshchenskij, N. V. Isaeva, E.A. Lancev, K. E. Smetanina, A. A. Murashov, A. V. Nokhrin, M. S. Boldin, V. N. Chuvil’deev, G. V. Shcherbak
{"title":"通过火花等离子烧结 WC 和 TiC 粉末获得的复合碳化物 (Ti, W)C 的相组成和显微结构研究","authors":"A. V. Terent’ev, Yu. V. Blagoveshchenskij, N. V. Isaeva, E.A. Lancev, K. E. Smetanina, A. A. Murashov, A. V. Nokhrin, M. S. Boldin, V. N. Chuvil’deev, G. V. Shcherbak","doi":"10.1134/S2075113324700114","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The possibility of low-temperature in situ synthesis of (Ti, W)C using plasma-chemical WC nanopowders and industrial micron TiC powders is demonstrated. Sintering/synthesis of WC–(25, 50, and 75) wt % TiC is carried out by electric pulsed (“spark”) plasma sintering (SPS) by heating powders in a vacuum at a rate of 50°C/min to a temperature of more than 1200°C under conditions of applying a stress of 70 MPa. It is established that the synthesis proceeds most efficiently in nanopowders with an addition of 50 and 75 wt % TiC. It is shown that the joint use of plasma-chemical synthesis of nanopowders and SPS makes it possible to obtain fine-grained (with a grain size of less than 1 μm) samples with increased density and satisfactory mechanical properties (Vickers hardness is 17–18 GPa, and minimum Palmquist crack resistance coefficient is ~3 MPa m<sup>1/2</sup>).</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 3","pages":"696 - 706"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Phase Composition and Microstructure of Complex Carbide (Ti, W)C Obtained by Spark Plasma Sintering of WC and TiC Powders\",\"authors\":\"A. V. Terent’ev, Yu. V. Blagoveshchenskij, N. V. Isaeva, E.A. Lancev, K. E. Smetanina, A. A. Murashov, A. V. Nokhrin, M. S. Boldin, V. N. Chuvil’deev, G. V. Shcherbak\",\"doi\":\"10.1134/S2075113324700114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—The possibility of low-temperature in situ synthesis of (Ti, W)C using plasma-chemical WC nanopowders and industrial micron TiC powders is demonstrated. Sintering/synthesis of WC–(25, 50, and 75) wt % TiC is carried out by electric pulsed (“spark”) plasma sintering (SPS) by heating powders in a vacuum at a rate of 50°C/min to a temperature of more than 1200°C under conditions of applying a stress of 70 MPa. It is established that the synthesis proceeds most efficiently in nanopowders with an addition of 50 and 75 wt % TiC. It is shown that the joint use of plasma-chemical synthesis of nanopowders and SPS makes it possible to obtain fine-grained (with a grain size of less than 1 μm) samples with increased density and satisfactory mechanical properties (Vickers hardness is 17–18 GPa, and minimum Palmquist crack resistance coefficient is ~3 MPa m<sup>1/2</sup>).</p>\",\"PeriodicalId\":586,\"journal\":{\"name\":\"Inorganic Materials: Applied Research\",\"volume\":\"15 3\",\"pages\":\"696 - 706\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials: Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2075113324700114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Study of the Phase Composition and Microstructure of Complex Carbide (Ti, W)C Obtained by Spark Plasma Sintering of WC and TiC Powders
Abstract—The possibility of low-temperature in situ synthesis of (Ti, W)C using plasma-chemical WC nanopowders and industrial micron TiC powders is demonstrated. Sintering/synthesis of WC–(25, 50, and 75) wt % TiC is carried out by electric pulsed (“spark”) plasma sintering (SPS) by heating powders in a vacuum at a rate of 50°C/min to a temperature of more than 1200°C under conditions of applying a stress of 70 MPa. It is established that the synthesis proceeds most efficiently in nanopowders with an addition of 50 and 75 wt % TiC. It is shown that the joint use of plasma-chemical synthesis of nanopowders and SPS makes it possible to obtain fine-grained (with a grain size of less than 1 μm) samples with increased density and satisfactory mechanical properties (Vickers hardness is 17–18 GPa, and minimum Palmquist crack resistance coefficient is ~3 MPa m1/2).
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.