机器人网络物理系统中全向移动平台的元启发式模糊神经网络与自调整自主控制的融合

IF 3.6 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Fuzzy Systems Pub Date : 2024-06-03 DOI:10.1007/s40815-024-01752-w
Hsu-Chih Huang, Jing-Jun Xu, Han-Lung Kuo
{"title":"机器人网络物理系统中全向移动平台的元启发式模糊神经网络与自调整自主控制的融合","authors":"Hsu-Chih Huang, Jing-Jun Xu, Han-Lung Kuo","doi":"10.1007/s40815-024-01752-w","DOIUrl":null,"url":null,"abstract":"<p>This paper contributes to the fusion of metaheuristic fuzzy neural network (FNN) and self-tuning autonomous control for omnidirectional mobile platforms in robotic cyber-physical systems (RCPSs). A cyber grey wolf optimization (GWO)-based FNN computing is incorporated with the backstepping control scheme and dynamic modeling to achieve autonomous control for the omnidirectional Mecanum platforms with uncertainties for RCPSs, called GWOFNN. The proposed cyber GWOFNN computing method is employed to address the self-tuning autonomous control problem of RCPS omnidirectional platforms by considering modeling uncertainties and unknown frictions. Numerical simulations and real-time experiments via field-programmable gate array (FPGA) realization are provided to illustrate the efficacy, applicability and merits of the presented RCPS GWOFNN real-time self-tuning cyber control strategy. Through comparison works, the advantages of the proposed GWOFNN computing are validated to accomplish autonomous control for Mecanum mobile RCPSs in polar space.</p>","PeriodicalId":14056,"journal":{"name":"International Journal of Fuzzy Systems","volume":"34 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusion of Metaheuristic Fuzzy Neural Network and Self-tuning Autonomous Control for Omnidirectional Mobile Platforms in Robotic Cyber-Physical Systems\",\"authors\":\"Hsu-Chih Huang, Jing-Jun Xu, Han-Lung Kuo\",\"doi\":\"10.1007/s40815-024-01752-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper contributes to the fusion of metaheuristic fuzzy neural network (FNN) and self-tuning autonomous control for omnidirectional mobile platforms in robotic cyber-physical systems (RCPSs). A cyber grey wolf optimization (GWO)-based FNN computing is incorporated with the backstepping control scheme and dynamic modeling to achieve autonomous control for the omnidirectional Mecanum platforms with uncertainties for RCPSs, called GWOFNN. The proposed cyber GWOFNN computing method is employed to address the self-tuning autonomous control problem of RCPS omnidirectional platforms by considering modeling uncertainties and unknown frictions. Numerical simulations and real-time experiments via field-programmable gate array (FPGA) realization are provided to illustrate the efficacy, applicability and merits of the presented RCPS GWOFNN real-time self-tuning cyber control strategy. Through comparison works, the advantages of the proposed GWOFNN computing are validated to accomplish autonomous control for Mecanum mobile RCPSs in polar space.</p>\",\"PeriodicalId\":14056,\"journal\":{\"name\":\"International Journal of Fuzzy Systems\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fuzzy Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40815-024-01752-w\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40815-024-01752-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于将元启发式模糊神经网络(FNN)与机器人网络物理系统(RCPS)中全向移动平台的自调整自主控制相融合。基于网络灰狼优化(GWO)的 FNN 计算与反步进控制方案和动态建模相结合,实现了 RCPS 中具有不确定性的全向 Mecanum 平台的自主控制,称为 GWOFNN。所提出的网络 GWOFNN 计算方法考虑了建模不确定性和未知摩擦,用于解决 RCPS 全向平台的自调整自主控制问题。通过数值模拟和现场可编程门阵列(FPGA)实现的实时实验,说明了所提出的 RCPS GWOFNN 实时自整定网络控制策略的有效性、适用性和优点。通过对比工作,验证了所提出的 GWOFNN 计算在极地空间实现 Mecanum 移动 RCPS 自主控制方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusion of Metaheuristic Fuzzy Neural Network and Self-tuning Autonomous Control for Omnidirectional Mobile Platforms in Robotic Cyber-Physical Systems

This paper contributes to the fusion of metaheuristic fuzzy neural network (FNN) and self-tuning autonomous control for omnidirectional mobile platforms in robotic cyber-physical systems (RCPSs). A cyber grey wolf optimization (GWO)-based FNN computing is incorporated with the backstepping control scheme and dynamic modeling to achieve autonomous control for the omnidirectional Mecanum platforms with uncertainties for RCPSs, called GWOFNN. The proposed cyber GWOFNN computing method is employed to address the self-tuning autonomous control problem of RCPS omnidirectional platforms by considering modeling uncertainties and unknown frictions. Numerical simulations and real-time experiments via field-programmable gate array (FPGA) realization are provided to illustrate the efficacy, applicability and merits of the presented RCPS GWOFNN real-time self-tuning cyber control strategy. Through comparison works, the advantages of the proposed GWOFNN computing are validated to accomplish autonomous control for Mecanum mobile RCPSs in polar space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fuzzy Systems
International Journal of Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
7.80
自引率
9.30%
发文量
188
审稿时长
16 months
期刊介绍: The International Journal of Fuzzy Systems (IJFS) is an official journal of Taiwan Fuzzy Systems Association (TFSA) and is published semi-quarterly. IJFS will consider high quality papers that deal with the theory, design, and application of fuzzy systems, soft computing systems, grey systems, and extension theory systems ranging from hardware to software. Survey and expository submissions are also welcome.
期刊最新文献
Event-Based Finite-Time $$H_\infty $$ Security Control for Networked Control Systems with Deception Attacks A Distance-Based Approach to Fuzzy Cognitive Maps Using Pythagorean Fuzzy Sets Relaxed Stability and Non-weighted $$L_2$$ -Gain Analysis for Asynchronously Switched Polynomial Fuzzy Systems Nonsingular Fast Terminal Sliding Mode Control of Uncertain Robotic Manipulator System Based on Adaptive Fuzzy Wavelet Neural Network Efficient and Effective Anomaly Detection in Autonomous Vehicles: A Combination of Gradient Boosting and ANFIS Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1