含 La 的铁铬铝熔体与 CaO-Al2O3-La2O3 基熔渣之间反应行为的定量表征及其对模具助熔剂设计的指导作用

Lei Fan, Tian-peng Qu, De-yong Wang, Cheng-jun Liu
{"title":"含 La 的铁铬铝熔体与 CaO-Al2O3-La2O3 基熔渣之间反应行为的定量表征及其对模具助熔剂设计的指导作用","authors":"Lei Fan, Tian-peng Qu, De-yong Wang, Cheng-jun Liu","doi":"10.1007/s42243-024-01233-2","DOIUrl":null,"url":null,"abstract":"<p>The reaction behavior between CaO–Al<sub>2</sub>O<sub>3</sub>–La<sub>2</sub>O<sub>3</sub>-based slags and La-bearing FeCrAl melt was quantitatively characterized, which was further compared with the reaction behavior of CaO–SiO<sub>2</sub>-based slags. Based on this, the new type of mold flux for La-bearing FeCrAl alloy continuous casting was designed and its basic properties were evaluated. The results showed that the order of reaction degree of fluxing agents in CaO–Al<sub>2</sub>O<sub>3</sub>–La<sub>2</sub>O<sub>3</sub>-based slags is (Na<sub>2</sub>O) &gt; (B<sub>2</sub>O<sub>3</sub>) &gt; (Li<sub>2</sub>O), and the percentages of mass change of fluxing agents were 85.8, 54.29 and 42.35 wt.%, respectively. Moreover, the addition of (Li<sub>2</sub>O) and (Na<sub>2</sub>O) promoted the reaction between (CaO) and [Al], and the reaction degree of the former was weaker than that of the latter, which was due to the greater effect of (Na<sub>2</sub>O) on the activity of (CaO) and (Al<sub>2</sub>O<sub>3</sub>) than (Li<sub>2</sub>O). Compared with the reactivity of CaO–SiO<sub>2</sub>-based slags, the percentages of mass change of Al and La caused by slag–steel reaction decreased by 10.63–14.36 and 39.78–50.49 wt.%, respectively. The percentages of mass change of (Al<sub>2</sub>O<sub>3</sub>), (La<sub>2</sub>O<sub>3</sub>) and (CaO) in slags highest increased by 17.71, 17.98, and 7.81 wt.%, respectively. The reactivity of CaO–Al<sub>2</sub>O<sub>3</sub>–La<sub>2</sub>O<sub>3</sub>-based slags was significantly weakened. Ultimately, the new type of mold flux was designed and the composition range was determined. The fundamental properties of new mold flux basically meet the theoretical requirements for La-bearing FeCrAl alloy continuous casting.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"58 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative characterization of reaction behavior between La-bearing FeCrAl melt and CaO–Al2O3–La2O3-based slags and its guidance for design of mold flux\",\"authors\":\"Lei Fan, Tian-peng Qu, De-yong Wang, Cheng-jun Liu\",\"doi\":\"10.1007/s42243-024-01233-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The reaction behavior between CaO–Al<sub>2</sub>O<sub>3</sub>–La<sub>2</sub>O<sub>3</sub>-based slags and La-bearing FeCrAl melt was quantitatively characterized, which was further compared with the reaction behavior of CaO–SiO<sub>2</sub>-based slags. Based on this, the new type of mold flux for La-bearing FeCrAl alloy continuous casting was designed and its basic properties were evaluated. The results showed that the order of reaction degree of fluxing agents in CaO–Al<sub>2</sub>O<sub>3</sub>–La<sub>2</sub>O<sub>3</sub>-based slags is (Na<sub>2</sub>O) &gt; (B<sub>2</sub>O<sub>3</sub>) &gt; (Li<sub>2</sub>O), and the percentages of mass change of fluxing agents were 85.8, 54.29 and 42.35 wt.%, respectively. Moreover, the addition of (Li<sub>2</sub>O) and (Na<sub>2</sub>O) promoted the reaction between (CaO) and [Al], and the reaction degree of the former was weaker than that of the latter, which was due to the greater effect of (Na<sub>2</sub>O) on the activity of (CaO) and (Al<sub>2</sub>O<sub>3</sub>) than (Li<sub>2</sub>O). Compared with the reactivity of CaO–SiO<sub>2</sub>-based slags, the percentages of mass change of Al and La caused by slag–steel reaction decreased by 10.63–14.36 and 39.78–50.49 wt.%, respectively. The percentages of mass change of (Al<sub>2</sub>O<sub>3</sub>), (La<sub>2</sub>O<sub>3</sub>) and (CaO) in slags highest increased by 17.71, 17.98, and 7.81 wt.%, respectively. The reactivity of CaO–Al<sub>2</sub>O<sub>3</sub>–La<sub>2</sub>O<sub>3</sub>-based slags was significantly weakened. Ultimately, the new type of mold flux was designed and the composition range was determined. The fundamental properties of new mold flux basically meet the theoretical requirements for La-bearing FeCrAl alloy continuous casting.</p>\",\"PeriodicalId\":16151,\"journal\":{\"name\":\"Journal of Iron and Steel Research International\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Iron and Steel Research International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42243-024-01233-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01233-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定量分析了 CaO-Al2O3-La2O3 型炉渣与含 La 铁铬铝熔体之间的反应行为,并与 CaO-SiO2 型炉渣的反应行为进行了比较。在此基础上,设计了用于含 La FeCrAl 合金连铸的新型结晶器熔剂,并对其基本特性进行了评估。结果表明,CaO-Al2O3-La2O3 基熔渣中助熔剂的反应程度顺序为 (Na2O) > (B2O3) > (Li2O),助熔剂的质量变化百分比分别为 85.8、54.29 和 42.35 wt.%。此外,(Li2O)和(Na2O)的加入促进了(CaO)和[Al]的反应,前者的反应程度弱于后者,这是由于(Na2O)对(CaO)和(Al2O3)活性的影响大于(Li2O)。与 CaO-SiO2 基炉渣的反应活性相比,炉渣-钢反应引起的 Al 和 La 的质量变化百分比分别降低了 10.63-14.36 和 39.78-50.49 重量%。炉渣中 (Al2O3)、(La2O3) 和 (CaO) 的质量变化百分比最高,分别增加了 17.71、17.98 和 7.81 wt.%。基于 CaO-Al2O3-La2O3 的炉渣的反应活性明显减弱。最终,设计出了新型模具助熔剂,并确定了其成分范围。新型结晶器熔剂的基本特性基本满足含 La 铁铬铝合金连铸的理论要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative characterization of reaction behavior between La-bearing FeCrAl melt and CaO–Al2O3–La2O3-based slags and its guidance for design of mold flux

The reaction behavior between CaO–Al2O3–La2O3-based slags and La-bearing FeCrAl melt was quantitatively characterized, which was further compared with the reaction behavior of CaO–SiO2-based slags. Based on this, the new type of mold flux for La-bearing FeCrAl alloy continuous casting was designed and its basic properties were evaluated. The results showed that the order of reaction degree of fluxing agents in CaO–Al2O3–La2O3-based slags is (Na2O) > (B2O3) > (Li2O), and the percentages of mass change of fluxing agents were 85.8, 54.29 and 42.35 wt.%, respectively. Moreover, the addition of (Li2O) and (Na2O) promoted the reaction between (CaO) and [Al], and the reaction degree of the former was weaker than that of the latter, which was due to the greater effect of (Na2O) on the activity of (CaO) and (Al2O3) than (Li2O). Compared with the reactivity of CaO–SiO2-based slags, the percentages of mass change of Al and La caused by slag–steel reaction decreased by 10.63–14.36 and 39.78–50.49 wt.%, respectively. The percentages of mass change of (Al2O3), (La2O3) and (CaO) in slags highest increased by 17.71, 17.98, and 7.81 wt.%, respectively. The reactivity of CaO–Al2O3–La2O3-based slags was significantly weakened. Ultimately, the new type of mold flux was designed and the composition range was determined. The fundamental properties of new mold flux basically meet the theoretical requirements for La-bearing FeCrAl alloy continuous casting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
16.00%
发文量
161
审稿时长
2.8 months
期刊介绍: Publishes critically reviewed original research of archival significance Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..
期刊最新文献
Enhanced steelmaking cost optimization and real-time alloying element yield prediction: a ferroalloy model based on machine learning and linear programming Effect of Zr on microstructure and mechanical properties of 304 stainless steel joints brazed by Ag–Cu–Sn–In filler metal Effect of reaction time on interaction between steel with and without La and MgO–C refractory Mechanical behavior of GH4720Li nickel-based alloy at intermediate temperature for different strain rates Corrosion and passive behavior of SLM and wrought TA15 titanium alloys in hydrochloric acid solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1