利用主题建模方法识别开放获取的 LIS 期刊中的潜在主题和研究趋势的十年期研究

IF 3.5 3区 管理学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Scientometrics Pub Date : 2024-06-03 DOI:10.1007/s11192-024-05058-4
Abhijit Thakuria, Dipen Deka
{"title":"利用主题建模方法识别开放获取的 LIS 期刊中的潜在主题和研究趋势的十年期研究","authors":"Abhijit Thakuria, Dipen Deka","doi":"10.1007/s11192-024-05058-4","DOIUrl":null,"url":null,"abstract":"<p>The study utilized Latent Dirichlet Allocation (LDA) Topic modeling to identify prevalent latent topics within Open Access (OA) Library and Information Science (LIS) journals from 2013 to 2022. Eight core OA Scopus indexed journals were selected based on their SJR scores and DOAJ listing. Titles, Abstracts and keywords of 2589 articles were extracted from the Scopus database. R software packages were used to perform data analysis and LDA topic modeling. The optimal value of k was determined to be 9. The analysis revealed that 53.89% of documents comprise over 50% of a certain topic (θ &gt; 0.50). Notably, ‘Scholarly Communication’ and ‘Information Systems, Models and Frameworks’ emerged as dominant topics with the highest proportions of research literature in the corpus. The topic ‘Scholarly Communication’ experienced significant growth with an average annual growth rate (AAGR) of 4.37%, while ‘Collection development and E-resources’ exhibited the lowest research proportion and a negative AAGR of − 4.22%. Additionally, topics such as ‘Information Seeking Behaviour and User Studies’, ‘User Education and Information Literacy’, and ‘Information Retrieval and Systematic Review’ remained stable and persistent topics. Conversely, research on traditional topics like ‘Librarianship and Profession’, ‘Bibliometrics’ and ‘Medical Library and Health Information’ showed a gradual decline. The LDA topic modeling approach unveiled previously unknown or unexplored topics in open access LIS research literature, enhancing our understanding of emerging trends.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"126 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A decadal study on identifying latent topics and research trends in open access LIS journals using topic modeling approach\",\"authors\":\"Abhijit Thakuria, Dipen Deka\",\"doi\":\"10.1007/s11192-024-05058-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study utilized Latent Dirichlet Allocation (LDA) Topic modeling to identify prevalent latent topics within Open Access (OA) Library and Information Science (LIS) journals from 2013 to 2022. Eight core OA Scopus indexed journals were selected based on their SJR scores and DOAJ listing. Titles, Abstracts and keywords of 2589 articles were extracted from the Scopus database. R software packages were used to perform data analysis and LDA topic modeling. The optimal value of k was determined to be 9. The analysis revealed that 53.89% of documents comprise over 50% of a certain topic (θ &gt; 0.50). Notably, ‘Scholarly Communication’ and ‘Information Systems, Models and Frameworks’ emerged as dominant topics with the highest proportions of research literature in the corpus. The topic ‘Scholarly Communication’ experienced significant growth with an average annual growth rate (AAGR) of 4.37%, while ‘Collection development and E-resources’ exhibited the lowest research proportion and a negative AAGR of − 4.22%. Additionally, topics such as ‘Information Seeking Behaviour and User Studies’, ‘User Education and Information Literacy’, and ‘Information Retrieval and Systematic Review’ remained stable and persistent topics. Conversely, research on traditional topics like ‘Librarianship and Profession’, ‘Bibliometrics’ and ‘Medical Library and Health Information’ showed a gradual decline. The LDA topic modeling approach unveiled previously unknown or unexplored topics in open access LIS research literature, enhancing our understanding of emerging trends.</p>\",\"PeriodicalId\":21755,\"journal\":{\"name\":\"Scientometrics\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientometrics\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1007/s11192-024-05058-4\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientometrics","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s11192-024-05058-4","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用潜狄利克特分配(LDA)主题建模来识别 2013 年至 2022 年开放获取(OA)图书馆与信息科学(LIS)期刊中的流行潜主题。根据其 SJR 分数和 DOAJ 列表,选择了八种核心 OA Scopus 索引期刊。从 Scopus 数据库中提取了 2589 篇文章的标题、摘要和关键词。使用 R 软件包进行数据分析和 LDA 主题建模。k 的最佳值被确定为 9。分析结果显示,53.89%的文档包含超过 50%的特定主题(θ >0.50)。值得注意的是,"学术交流 "和 "信息系统、模型和框架 "是语料库中研究文献比例最高的主导主题。学术交流 "专题的年均增长率(AAGR)为 4.37%,增长显著,而 "馆藏开发与电子资源 "专题的研究比例最低,年均增长率为负 4.22%。此外,"信息搜索行为与用户研究"、"用户教育与信息素养 "和 "信息检索与系统综述 "等主题仍然是稳定而持久的主题。相反,"图书馆学与专业"、"文献计量学 "和 "医学图书馆与健康信息 "等传统主题的研究则逐渐减少。LDA 主题建模方法揭示了开放存取 LIS 研究文献中以前未知或未探索的主题,增强了我们对新兴趋势的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A decadal study on identifying latent topics and research trends in open access LIS journals using topic modeling approach

The study utilized Latent Dirichlet Allocation (LDA) Topic modeling to identify prevalent latent topics within Open Access (OA) Library and Information Science (LIS) journals from 2013 to 2022. Eight core OA Scopus indexed journals were selected based on their SJR scores and DOAJ listing. Titles, Abstracts and keywords of 2589 articles were extracted from the Scopus database. R software packages were used to perform data analysis and LDA topic modeling. The optimal value of k was determined to be 9. The analysis revealed that 53.89% of documents comprise over 50% of a certain topic (θ > 0.50). Notably, ‘Scholarly Communication’ and ‘Information Systems, Models and Frameworks’ emerged as dominant topics with the highest proportions of research literature in the corpus. The topic ‘Scholarly Communication’ experienced significant growth with an average annual growth rate (AAGR) of 4.37%, while ‘Collection development and E-resources’ exhibited the lowest research proportion and a negative AAGR of − 4.22%. Additionally, topics such as ‘Information Seeking Behaviour and User Studies’, ‘User Education and Information Literacy’, and ‘Information Retrieval and Systematic Review’ remained stable and persistent topics. Conversely, research on traditional topics like ‘Librarianship and Profession’, ‘Bibliometrics’ and ‘Medical Library and Health Information’ showed a gradual decline. The LDA topic modeling approach unveiled previously unknown or unexplored topics in open access LIS research literature, enhancing our understanding of emerging trends.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientometrics
Scientometrics 管理科学-计算机:跨学科应用
CiteScore
7.20
自引率
17.90%
发文量
351
审稿时长
1.5 months
期刊介绍: Scientometrics aims at publishing original studies, short communications, preliminary reports, review papers, letters to the editor and book reviews on scientometrics. The topics covered are results of research concerned with the quantitative features and characteristics of science. Emphasis is placed on investigations in which the development and mechanism of science are studied by means of (statistical) mathematical methods. The Journal also provides the reader with important up-to-date information about international meetings and events in scientometrics and related fields. Appropriate bibliographic compilations are published as a separate section. Due to its fully interdisciplinary character, Scientometrics is indispensable to research workers and research administrators throughout the world. It provides valuable assistance to librarians and documentalists in central scientific agencies, ministries, research institutes and laboratories. Scientometrics includes the Journal of Research Communication Studies. Consequently its aims and scope cover that of the latter, namely, to bring the results of research investigations together in one place, in such a form that they will be of use not only to the investigators themselves but also to the entrepreneurs and research workers who form the object of these studies.
期刊最新文献
Evaluating the wisdom of scholar crowds from the perspective of knowledge diffusion Automatic gender detection: a methodological procedure and recommendations to computationally infer the gender from names with ChatGPT and gender APIs An integrated indicator for evaluating scientific papers: considering academic impact and novelty Measuring hotness transfer of individual papers based on citation relationship Prevalence and characteristics of graphical abstracts in a specialist pharmacology journal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1