玻色-爱因斯坦凝聚与杯状高温超导体

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER The European Physical Journal B Pub Date : 2024-06-03 DOI:10.1140/epjb/s10051-024-00688-2
Hiroyuki Kaga
{"title":"玻色-爱因斯坦凝聚与杯状高温超导体","authors":"Hiroyuki Kaga","doi":"10.1140/epjb/s10051-024-00688-2","DOIUrl":null,"url":null,"abstract":"<p>The rigorous formulations of boson (the ideal Bose gas) and fermion-pair Bose–Einstein (BE) condensations reveal that the two condensed states are different; the boson condensation given by the boson coherent state is a sound condensed state based on a large number of states corresponding to the grand canonical ensemble of the classical ideal gas (average particle number <i>N</i>) where the norm of the coherent state is equivalent to the grand (canonical) partition function <span>\\(\\Xi _{0}=e^{N}\\)</span> of the latter. The fermion-pair condensation is a very limited condensed state formed between holes and fermion-pairs and its condensate is a fermion-pair and hole condensate. The singlet-bond (SB) superconductivity theory for cuprate high-temperature superconductors finds the following; (1) the superconducting transition is a first-order transition, (2) the experimentally observed exponential behavior of the specific heat coefficient <span>\\(\\gamma (T)\\equiv C(T)/T\\)</span> near <span>\\(T_{c}\\)</span> is caused by the high energy excitations of superconducting SB-pairs to the normal-state insulating immobile SB-pairs beyond the characteristic energy scale <span>\\(\\sim k_{B}T_{c}\\)</span> of the condensation energy, which is the same origin as that of the exponential <span>\\(\\gamma (T)\\)</span> behavior in the BCS superconductivity, and (3) Josephson tunneling in <i>d</i>-wave superconductor Josephson junction cannot give rise to the so-called <span>\\(\\pi \\)</span>-shift Josephson phase in both the underdoped and overdoped cuprate superconductor Josephson junctions.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bose–Einstein condensation and cuprate high-temperature superconductor\",\"authors\":\"Hiroyuki Kaga\",\"doi\":\"10.1140/epjb/s10051-024-00688-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rigorous formulations of boson (the ideal Bose gas) and fermion-pair Bose–Einstein (BE) condensations reveal that the two condensed states are different; the boson condensation given by the boson coherent state is a sound condensed state based on a large number of states corresponding to the grand canonical ensemble of the classical ideal gas (average particle number <i>N</i>) where the norm of the coherent state is equivalent to the grand (canonical) partition function <span>\\\\(\\\\Xi _{0}=e^{N}\\\\)</span> of the latter. The fermion-pair condensation is a very limited condensed state formed between holes and fermion-pairs and its condensate is a fermion-pair and hole condensate. The singlet-bond (SB) superconductivity theory for cuprate high-temperature superconductors finds the following; (1) the superconducting transition is a first-order transition, (2) the experimentally observed exponential behavior of the specific heat coefficient <span>\\\\(\\\\gamma (T)\\\\equiv C(T)/T\\\\)</span> near <span>\\\\(T_{c}\\\\)</span> is caused by the high energy excitations of superconducting SB-pairs to the normal-state insulating immobile SB-pairs beyond the characteristic energy scale <span>\\\\(\\\\sim k_{B}T_{c}\\\\)</span> of the condensation energy, which is the same origin as that of the exponential <span>\\\\(\\\\gamma (T)\\\\)</span> behavior in the BCS superconductivity, and (3) Josephson tunneling in <i>d</i>-wave superconductor Josephson junction cannot give rise to the so-called <span>\\\\(\\\\pi \\\\)</span>-shift Josephson phase in both the underdoped and overdoped cuprate superconductor Josephson junctions.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00688-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00688-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

摘要 玻色子(理想玻色气体)凝聚和费米子对玻色-爱因斯坦(BE)凝聚的严格公式化揭示了两种凝聚态的不同;由玻色子相干态给出的玻色子凝聚态是一种基于与经典理想气体(平均粒子数N)的大规范集合相对应的大量态的健全凝聚态,其中相干态的规范等价于后者的大(规范)分割函数\(\Xi _{0}=e^{N}\)。费米子对凝聚是空穴与费米子对之间形成的一种非常有限的凝聚态,其凝聚态是费米子对与空穴的凝聚态。杯状高温超导体的单子键(SB)超导理论发现了以下几点;(1)超导转变是一个一阶转变,(2)实验观察到的\(\gamma (T)\equiv C(T)/T\)附近比热系数的指数行为是由\(T_{c}\)之外的特征能标\(\sim k_{B}T_{c}\)超导SB对向常态绝缘不动SB对的高能激发引起的、(3)d波超导体约瑟夫森结中的约瑟夫森隧穿不能在掺杂不足和掺杂过度的铜氧化物超导体约瑟夫森结中产生所谓的\(\pi \)-移位约瑟夫森相。图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bose–Einstein condensation and cuprate high-temperature superconductor

The rigorous formulations of boson (the ideal Bose gas) and fermion-pair Bose–Einstein (BE) condensations reveal that the two condensed states are different; the boson condensation given by the boson coherent state is a sound condensed state based on a large number of states corresponding to the grand canonical ensemble of the classical ideal gas (average particle number N) where the norm of the coherent state is equivalent to the grand (canonical) partition function \(\Xi _{0}=e^{N}\) of the latter. The fermion-pair condensation is a very limited condensed state formed between holes and fermion-pairs and its condensate is a fermion-pair and hole condensate. The singlet-bond (SB) superconductivity theory for cuprate high-temperature superconductors finds the following; (1) the superconducting transition is a first-order transition, (2) the experimentally observed exponential behavior of the specific heat coefficient \(\gamma (T)\equiv C(T)/T\) near \(T_{c}\) is caused by the high energy excitations of superconducting SB-pairs to the normal-state insulating immobile SB-pairs beyond the characteristic energy scale \(\sim k_{B}T_{c}\) of the condensation energy, which is the same origin as that of the exponential \(\gamma (T)\) behavior in the BCS superconductivity, and (3) Josephson tunneling in d-wave superconductor Josephson junction cannot give rise to the so-called \(\pi \)-shift Josephson phase in both the underdoped and overdoped cuprate superconductor Josephson junctions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
期刊最新文献
Hidden attractors in fractional-order discrete maps Diffusion on assortative networks: from mean-field to agent-based, via Newman rewiring Single-photon stimulated emission in waveguide quantum electrodynamics The charge states in polypropylene doped with ZrO2 nanoparticles and their changes at heat treatment Fuels: a key factor to influence the luminescence properties of CaAl2O4: Dy phosphors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1