Almudena Fuster-Matanzo, Alfonso Picó Peris, Fuensanta Bellvís Bataller, Ana Jimenez-Pastor, Glen J. Weiss, Luis Martí-Bonmatí, Antonio Lázaro Sánchez, Giuseppe L. Banna, Alfredo Addeo, Ángel Alberich-Bayarri
{"title":"预测非小细胞肺癌的癌基因突变状态:系统综述和荟萃分析,特别关注基于人工智能的方法","authors":"Almudena Fuster-Matanzo, Alfonso Picó Peris, Fuensanta Bellvís Bataller, Ana Jimenez-Pastor, Glen J. Weiss, Luis Martí-Bonmatí, Antonio Lázaro Sánchez, Giuseppe L. Banna, Alfredo Addeo, Ángel Alberich-Bayarri","doi":"10.1101/2024.05.31.24308261","DOIUrl":null,"url":null,"abstract":"<strong>Background</strong> In non-small cell lung cancer (NSCLC), alternative strategies to determine patient oncogene mutation status are essential to overcome some of the drawbacks associated with current methods. We aimed to review the use of radiomics alone or in combination with clinical data and to evaluate the performance of artificial intelligence (AI)-based models on the prediction of oncogene mutation status.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of oncogene mutation status in non-small cell lung cancer: A systematic review and meta-analysis with a special focus on artificial-intelligence-based methods\",\"authors\":\"Almudena Fuster-Matanzo, Alfonso Picó Peris, Fuensanta Bellvís Bataller, Ana Jimenez-Pastor, Glen J. Weiss, Luis Martí-Bonmatí, Antonio Lázaro Sánchez, Giuseppe L. Banna, Alfredo Addeo, Ángel Alberich-Bayarri\",\"doi\":\"10.1101/2024.05.31.24308261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background</strong> In non-small cell lung cancer (NSCLC), alternative strategies to determine patient oncogene mutation status are essential to overcome some of the drawbacks associated with current methods. We aimed to review the use of radiomics alone or in combination with clinical data and to evaluate the performance of artificial intelligence (AI)-based models on the prediction of oncogene mutation status.\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.05.31.24308261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.05.31.24308261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of oncogene mutation status in non-small cell lung cancer: A systematic review and meta-analysis with a special focus on artificial-intelligence-based methods
Background In non-small cell lung cancer (NSCLC), alternative strategies to determine patient oncogene mutation status are essential to overcome some of the drawbacks associated with current methods. We aimed to review the use of radiomics alone or in combination with clinical data and to evaluate the performance of artificial intelligence (AI)-based models on the prediction of oncogene mutation status.