Luciana Villa Castrillón, Marcel Ricker, Joanna Staneva, Jens Meyerjürgens, Thomas H. Badewien, Emil V. Stanev
{"title":"北海海洋波耦合模型中的相对扩散和相对扩散率","authors":"Luciana Villa Castrillón, Marcel Ricker, Joanna Staneva, Jens Meyerjürgens, Thomas H. Badewien, Emil V. Stanev","doi":"10.1007/s10236-024-01619-6","DOIUrl":null,"url":null,"abstract":"<p>The study analyzes the impact of various wave-induced processes on relative dispersion and diffusivities in the North Sea using OpenDrift, a Lagrangian particle-drift model driven by a fully coupled NEMO-WAM model. The coupled model parameterizations include sea state-dependent momentum flux, energy flux, and wave-induced mixing. The study demonstrates that Eulerian currents, influenced by the interaction between the ocean and wave models, significantly enhance particle transport. Experiments conducted using drifter clusters obtained during an RV Heincke excursion further confirm the impact of wind-wave coupling. The analysis includes a comparison of results from experiments with and without wave coupling. The impact of diffusion in the Lagrangian model on relative dispersion is investigated, with the conclusion that diffusion is essential for achieving precise simulations. Furthermore, the incorporation of wind-wave-driven mixing parameters, including sea state-dependent momentum flux, energy flux, and wave-induced mixing, into the hydrodynamic model leads to elevated levels of relative dispersion and diffusivity.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"58 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative dispersion and relative diffusivities in an ocean-wave coupled model of the North Sea\",\"authors\":\"Luciana Villa Castrillón, Marcel Ricker, Joanna Staneva, Jens Meyerjürgens, Thomas H. Badewien, Emil V. Stanev\",\"doi\":\"10.1007/s10236-024-01619-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study analyzes the impact of various wave-induced processes on relative dispersion and diffusivities in the North Sea using OpenDrift, a Lagrangian particle-drift model driven by a fully coupled NEMO-WAM model. The coupled model parameterizations include sea state-dependent momentum flux, energy flux, and wave-induced mixing. The study demonstrates that Eulerian currents, influenced by the interaction between the ocean and wave models, significantly enhance particle transport. Experiments conducted using drifter clusters obtained during an RV Heincke excursion further confirm the impact of wind-wave coupling. The analysis includes a comparison of results from experiments with and without wave coupling. The impact of diffusion in the Lagrangian model on relative dispersion is investigated, with the conclusion that diffusion is essential for achieving precise simulations. Furthermore, the incorporation of wind-wave-driven mixing parameters, including sea state-dependent momentum flux, energy flux, and wave-induced mixing, into the hydrodynamic model leads to elevated levels of relative dispersion and diffusivity.</p>\",\"PeriodicalId\":19387,\"journal\":{\"name\":\"Ocean Dynamics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10236-024-01619-6\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10236-024-01619-6","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Relative dispersion and relative diffusivities in an ocean-wave coupled model of the North Sea
The study analyzes the impact of various wave-induced processes on relative dispersion and diffusivities in the North Sea using OpenDrift, a Lagrangian particle-drift model driven by a fully coupled NEMO-WAM model. The coupled model parameterizations include sea state-dependent momentum flux, energy flux, and wave-induced mixing. The study demonstrates that Eulerian currents, influenced by the interaction between the ocean and wave models, significantly enhance particle transport. Experiments conducted using drifter clusters obtained during an RV Heincke excursion further confirm the impact of wind-wave coupling. The analysis includes a comparison of results from experiments with and without wave coupling. The impact of diffusion in the Lagrangian model on relative dispersion is investigated, with the conclusion that diffusion is essential for achieving precise simulations. Furthermore, the incorporation of wind-wave-driven mixing parameters, including sea state-dependent momentum flux, energy flux, and wave-induced mixing, into the hydrodynamic model leads to elevated levels of relative dispersion and diffusivity.
期刊介绍:
Ocean Dynamics is an international journal that aims to publish high-quality peer-reviewed articles in the following areas of research:
Theoretical oceanography (new theoretical concepts that further system understanding with a strong view to applicability for operational or monitoring purposes);
Computational oceanography (all aspects of ocean modeling and data analysis);
Observational oceanography (new techniques or systematic approaches in measuring oceanic variables, including all aspects of monitoring the state of the ocean);
Articles with an interdisciplinary character that encompass research in the fields of biological, chemical and physical oceanography are especially encouraged.