Faisal Altaf, Ching-Lung Chang, Naveed Ishtiaq Chaudhary, Taimoor Ali Khan, Zeshan Aslam Khan, Chi-Min Shu, Muhammad Asif Zahoor Raja
{"title":"天体物理学考察:分数哈默斯坦控制自回归模型的过境搜索启发式方法","authors":"Faisal Altaf, Ching-Lung Chang, Naveed Ishtiaq Chaudhary, Taimoor Ali Khan, Zeshan Aslam Khan, Chi-Min Shu, Muhammad Asif Zahoor Raja","doi":"10.1142/s0217984924504177","DOIUrl":null,"url":null,"abstract":"<p>This study presents an astrophysics-inspired transit search optimization (TSO) algorithm based on exoplanet search divided into five phases: galaxy phase, star phase, transit phase, neighbor phase and exploitation phase for effective parameter estimation of fractional Hammerstein control autoregressive (Fr-HCAR) systems. Various physical phenomena and real processes can be modeled with Fr-HCAR systems and estimating the Fr-HCAR parameters becomes a vital task. The mean-square error (MSE)-based criterion function is developed, and efficacy of the TSO for Fr-HCAR identification is deeply analyzed for different fractional orders, disturbance levels and degrees of freedom. The TSO remained accurate, convergent, robust and stable for all variations in Fr-HCAR but the accuracy level degrades a little bit for high disturbance and increased degrees of freedom. The reliability and trustworthiness of the TSO for Fr-HCAR identification are endorsed through statistical analyses conducted on sufficient autonomous executions of the scheme.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"16 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astrophysical expedition: Transit search heuristics for fractional Hammerstein control autoregressive models\",\"authors\":\"Faisal Altaf, Ching-Lung Chang, Naveed Ishtiaq Chaudhary, Taimoor Ali Khan, Zeshan Aslam Khan, Chi-Min Shu, Muhammad Asif Zahoor Raja\",\"doi\":\"10.1142/s0217984924504177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents an astrophysics-inspired transit search optimization (TSO) algorithm based on exoplanet search divided into five phases: galaxy phase, star phase, transit phase, neighbor phase and exploitation phase for effective parameter estimation of fractional Hammerstein control autoregressive (Fr-HCAR) systems. Various physical phenomena and real processes can be modeled with Fr-HCAR systems and estimating the Fr-HCAR parameters becomes a vital task. The mean-square error (MSE)-based criterion function is developed, and efficacy of the TSO for Fr-HCAR identification is deeply analyzed for different fractional orders, disturbance levels and degrees of freedom. The TSO remained accurate, convergent, robust and stable for all variations in Fr-HCAR but the accuracy level degrades a little bit for high disturbance and increased degrees of freedom. The reliability and trustworthiness of the TSO for Fr-HCAR identification are endorsed through statistical analyses conducted on sufficient autonomous executions of the scheme.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924504177\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924504177","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Astrophysical expedition: Transit search heuristics for fractional Hammerstein control autoregressive models
This study presents an astrophysics-inspired transit search optimization (TSO) algorithm based on exoplanet search divided into five phases: galaxy phase, star phase, transit phase, neighbor phase and exploitation phase for effective parameter estimation of fractional Hammerstein control autoregressive (Fr-HCAR) systems. Various physical phenomena and real processes can be modeled with Fr-HCAR systems and estimating the Fr-HCAR parameters becomes a vital task. The mean-square error (MSE)-based criterion function is developed, and efficacy of the TSO for Fr-HCAR identification is deeply analyzed for different fractional orders, disturbance levels and degrees of freedom. The TSO remained accurate, convergent, robust and stable for all variations in Fr-HCAR but the accuracy level degrades a little bit for high disturbance and increased degrees of freedom. The reliability and trustworthiness of the TSO for Fr-HCAR identification are endorsed through statistical analyses conducted on sufficient autonomous executions of the scheme.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.