He Kong, Tong Li, Jingguo Ge, Lei Zhang, Liangxiong Li
{"title":"利用图卷积网络通过跨度级加强微服务系统的故障定位","authors":"He Kong, Tong Li, Jingguo Ge, Lei Zhang, Liangxiong Li","doi":"10.1007/s10515-024-00445-w","DOIUrl":null,"url":null,"abstract":"<div><p>In the domain of cloud computing and distributed systems, microservices architecture has become preeminent due to its scalability and flexibility. However, the distributed nature of microservices systems introduces significant challenges in maintaining operational reliability, especially in fault localization. Traditional methods for fault localization are insufficient due to time-intensive and prone to error. Addressing this gap, we present SpanGraph, a novel framework employing graph convolutional networks (GCN) to achieve efficient span-level fault localization. SpanGraph constructs a directed graph from system traces to capture invocation relationships and execution times. It then utilizes GCN for edge representation learning to detect anomalies. Experimental results demonstrate that SpanGraph outperforms all baseline approaches on both the Sockshop and TrainTicket datasets. We also conduct incremental experiments on SpanGraph using unseen traces to validate its generalizability and scalability. Furthermore, we perform an ablation study, sensitivity analysis, and complexity analysis for SpanGraph to further verify its robustness, effectiveness, and flexibility. Finally, we validate SpanGraph’s effectiveness in anomaly detection and fault location using real-world datasets.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"31 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing fault localization in microservices systems through span-level using graph convolutional networks\",\"authors\":\"He Kong, Tong Li, Jingguo Ge, Lei Zhang, Liangxiong Li\",\"doi\":\"10.1007/s10515-024-00445-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the domain of cloud computing and distributed systems, microservices architecture has become preeminent due to its scalability and flexibility. However, the distributed nature of microservices systems introduces significant challenges in maintaining operational reliability, especially in fault localization. Traditional methods for fault localization are insufficient due to time-intensive and prone to error. Addressing this gap, we present SpanGraph, a novel framework employing graph convolutional networks (GCN) to achieve efficient span-level fault localization. SpanGraph constructs a directed graph from system traces to capture invocation relationships and execution times. It then utilizes GCN for edge representation learning to detect anomalies. Experimental results demonstrate that SpanGraph outperforms all baseline approaches on both the Sockshop and TrainTicket datasets. We also conduct incremental experiments on SpanGraph using unseen traces to validate its generalizability and scalability. Furthermore, we perform an ablation study, sensitivity analysis, and complexity analysis for SpanGraph to further verify its robustness, effectiveness, and flexibility. Finally, we validate SpanGraph’s effectiveness in anomaly detection and fault location using real-world datasets.</p></div>\",\"PeriodicalId\":55414,\"journal\":{\"name\":\"Automated Software Engineering\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automated Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10515-024-00445-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-024-00445-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Enhancing fault localization in microservices systems through span-level using graph convolutional networks
In the domain of cloud computing and distributed systems, microservices architecture has become preeminent due to its scalability and flexibility. However, the distributed nature of microservices systems introduces significant challenges in maintaining operational reliability, especially in fault localization. Traditional methods for fault localization are insufficient due to time-intensive and prone to error. Addressing this gap, we present SpanGraph, a novel framework employing graph convolutional networks (GCN) to achieve efficient span-level fault localization. SpanGraph constructs a directed graph from system traces to capture invocation relationships and execution times. It then utilizes GCN for edge representation learning to detect anomalies. Experimental results demonstrate that SpanGraph outperforms all baseline approaches on both the Sockshop and TrainTicket datasets. We also conduct incremental experiments on SpanGraph using unseen traces to validate its generalizability and scalability. Furthermore, we perform an ablation study, sensitivity analysis, and complexity analysis for SpanGraph to further verify its robustness, effectiveness, and flexibility. Finally, we validate SpanGraph’s effectiveness in anomaly detection and fault location using real-world datasets.
期刊介绍:
This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes.
Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.