改进未来干旱预测--基于互信息的新型多方法框架,用于子集选择和降水量全球气候模型的空间聚合

IF 3.9 3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Stochastic Environmental Research and Risk Assessment Pub Date : 2024-06-04 DOI:10.1007/s00477-024-02746-8
Muhammad Shakeel, Zulfiqar Ali
{"title":"改进未来干旱预测--基于互信息的新型多方法框架,用于子集选择和降水量全球气候模型的空间聚合","authors":"Muhammad Shakeel, Zulfiqar Ali","doi":"10.1007/s00477-024-02746-8","DOIUrl":null,"url":null,"abstract":"<p>Selecting appropriate Global Climate Models (GCMs) presents a significant challenge for accurate climate projections. To address this, a novel framework based on information theory based minimum redundancy and maximum relevancy (MRMR) method identifies top-performing GCMs across the entire study region using multicriteria decision analysis methodology. A subset of the ten best-performing models out of twenty-two GCMs is chosen for multi-model ensemble analysis. Five MME methods are selected to assess the ensemble performance of the ten selected GCMs, categorized into simple, regression-based, geometric-based, and machine learning ensembles. This study evaluates the effectiveness of the MME method based on a comprehensive index called the extended distance between indices of simulation and observation. An Adaptive Multimodel Standardized Drought Index (AMSDI) has been developed based on the optimal MME method. For the application of the framework and the proposed index, historical precipitation data from 1950 to 2014 were utilized from 28 grid points in the Punjab province of Pakistan as the reference dataset. Additionally, simulations from 22 models of the Coupled Model Intercomparison Project phase 6, both past and future, were employed for the estimation procedure. In AMSDI indicator, we used improved multimodel ensemble of precipitation for future drought characterization under various future scenarios. Outcome associated with this research show that AMSDI effectively have ability to effectively identifiy extreme drought events for all three future scenarios. In conclusion, the AMSDI method is shown to be effective and flexible, improving accuracy in monitoring droughts.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"44 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving future drought predictions – a novel multi-method framework based on mutual information for subset selection and spatial aggregation of global climate models of precipitation\",\"authors\":\"Muhammad Shakeel, Zulfiqar Ali\",\"doi\":\"10.1007/s00477-024-02746-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Selecting appropriate Global Climate Models (GCMs) presents a significant challenge for accurate climate projections. To address this, a novel framework based on information theory based minimum redundancy and maximum relevancy (MRMR) method identifies top-performing GCMs across the entire study region using multicriteria decision analysis methodology. A subset of the ten best-performing models out of twenty-two GCMs is chosen for multi-model ensemble analysis. Five MME methods are selected to assess the ensemble performance of the ten selected GCMs, categorized into simple, regression-based, geometric-based, and machine learning ensembles. This study evaluates the effectiveness of the MME method based on a comprehensive index called the extended distance between indices of simulation and observation. An Adaptive Multimodel Standardized Drought Index (AMSDI) has been developed based on the optimal MME method. For the application of the framework and the proposed index, historical precipitation data from 1950 to 2014 were utilized from 28 grid points in the Punjab province of Pakistan as the reference dataset. Additionally, simulations from 22 models of the Coupled Model Intercomparison Project phase 6, both past and future, were employed for the estimation procedure. In AMSDI indicator, we used improved multimodel ensemble of precipitation for future drought characterization under various future scenarios. Outcome associated with this research show that AMSDI effectively have ability to effectively identifiy extreme drought events for all three future scenarios. In conclusion, the AMSDI method is shown to be effective and flexible, improving accuracy in monitoring droughts.</p>\",\"PeriodicalId\":21987,\"journal\":{\"name\":\"Stochastic Environmental Research and Risk Assessment\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Environmental Research and Risk Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00477-024-02746-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02746-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

选择合适的全球气候模型(GCMs)对准确的气候预测是一项重大挑战。为解决这一问题,基于信息论的最小冗余和最大相关性(MRMR)方法建立了一个新框架,利用多标准决策分析方法确定整个研究区域表现最佳的全球气候模型。从 22 个 GCM 中选出 10 个表现最佳的模型子集进行多模型集合分析。选择了五种 MME 方法来评估所选十个 GCM 的集合性能,分为简单集合、回归集合、几何集合和机器学习集合。本研究根据模拟指数与观测指数之间的扩展距离这一综合指数来评估 MME 方法的有效性。基于最优 MME 方法,开发了自适应多模型标准化干旱指数(AMSDI)。在应用该框架和拟议指数时,使用了巴基斯坦旁遮普省 28 个网格点 1950 年至 2014 年的历史降水数据作为参考数据集。此外,在估算过程中还采用了耦合模式相互比较项目第 6 阶段的 22 个模式的过去和未来模拟。在 AMSDI 指标中,我们使用了改进的多模型降水量集合,用于描述各种未来情景下的未来干旱特征。研究结果表明,AMSDI 能够有效识别三种未来情景下的极端干旱事件。总之,AMSDI 方法有效而灵活,提高了干旱监测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving future drought predictions – a novel multi-method framework based on mutual information for subset selection and spatial aggregation of global climate models of precipitation

Selecting appropriate Global Climate Models (GCMs) presents a significant challenge for accurate climate projections. To address this, a novel framework based on information theory based minimum redundancy and maximum relevancy (MRMR) method identifies top-performing GCMs across the entire study region using multicriteria decision analysis methodology. A subset of the ten best-performing models out of twenty-two GCMs is chosen for multi-model ensemble analysis. Five MME methods are selected to assess the ensemble performance of the ten selected GCMs, categorized into simple, regression-based, geometric-based, and machine learning ensembles. This study evaluates the effectiveness of the MME method based on a comprehensive index called the extended distance between indices of simulation and observation. An Adaptive Multimodel Standardized Drought Index (AMSDI) has been developed based on the optimal MME method. For the application of the framework and the proposed index, historical precipitation data from 1950 to 2014 were utilized from 28 grid points in the Punjab province of Pakistan as the reference dataset. Additionally, simulations from 22 models of the Coupled Model Intercomparison Project phase 6, both past and future, were employed for the estimation procedure. In AMSDI indicator, we used improved multimodel ensemble of precipitation for future drought characterization under various future scenarios. Outcome associated with this research show that AMSDI effectively have ability to effectively identifiy extreme drought events for all three future scenarios. In conclusion, the AMSDI method is shown to be effective and flexible, improving accuracy in monitoring droughts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
9.50%
发文量
189
审稿时长
3.8 months
期刊介绍: Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas: - Spatiotemporal analysis and mapping of natural processes. - Enviroinformatics. - Environmental risk assessment, reliability analysis and decision making. - Surface and subsurface hydrology and hydraulics. - Multiphase porous media domains and contaminant transport modelling. - Hazardous waste site characterization. - Stochastic turbulence and random hydrodynamic fields. - Chaotic and fractal systems. - Random waves and seafloor morphology. - Stochastic atmospheric and climate processes. - Air pollution and quality assessment research. - Modern geostatistics. - Mechanisms of pollutant formation, emission, exposure and absorption. - Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection. - Bioinformatics. - Probabilistic methods in ecology and population biology. - Epidemiological investigations. - Models using stochastic differential equations stochastic or partial differential equations. - Hazardous waste site characterization.
期刊最新文献
Hybrid method for rainfall-induced regional landslide susceptibility mapping Prediction of urban flood inundation using Bayesian convolutional neural networks Unravelling complexities: a study on geopolitical dynamics, economic complexity, R&D impact on green innovation in China AHP and FAHP-based multi-criteria analysis for suitable dam location analysis: a case study of the Bagmati Basin, Nepal Risk and retraction: asymmetric nexus between monetary policy uncertainty and eco-friendly investment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1