在铁泡沫上构建常温硫化镍铁,用于大电流整体水分裂

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-06-17 DOI:10.1039/d4cy00328d
Shuang Gao , Zhuo Wang , Ping Nie , Juan Jian , Hairui Wang , Fen Yao , Limin Chang
{"title":"在铁泡沫上构建常温硫化镍铁,用于大电流整体水分裂","authors":"Shuang Gao ,&nbsp;Zhuo Wang ,&nbsp;Ping Nie ,&nbsp;Juan Jian ,&nbsp;Hairui Wang ,&nbsp;Fen Yao ,&nbsp;Limin Chang","doi":"10.1039/d4cy00328d","DOIUrl":null,"url":null,"abstract":"<div><p>The development of non-precious metal overall water splitting electrocatalysts under high current density is of utmost importance in feasible water splitting technology. Herein, we present an ambient temperature sulfuration strategy through <em>in situ</em> construction of iron nickel sulfide nanosheets vertically on 3D microporous iron foam. The synthesis conditions are simple and conducive to large-scale production. The FeNiS/IF nanosheets exhibit outstanding performance towards the HER and OER at large current densities, even in the order of 1000 mA cm<sup>−2</sup>. Density functional theory calculations show that FeNiS/IF as a bimetallic sulfide exhibits superior HER activity in alkaline media due to the optimization of Δ<em>G</em><sub>H*</sub> and a more favorable water adsorption process.</p></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of nickel iron sulfide at ambient temperature on Fe foam for high-current overall water splitting†\",\"authors\":\"Shuang Gao ,&nbsp;Zhuo Wang ,&nbsp;Ping Nie ,&nbsp;Juan Jian ,&nbsp;Hairui Wang ,&nbsp;Fen Yao ,&nbsp;Limin Chang\",\"doi\":\"10.1039/d4cy00328d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of non-precious metal overall water splitting electrocatalysts under high current density is of utmost importance in feasible water splitting technology. Herein, we present an ambient temperature sulfuration strategy through <em>in situ</em> construction of iron nickel sulfide nanosheets vertically on 3D microporous iron foam. The synthesis conditions are simple and conducive to large-scale production. The FeNiS/IF nanosheets exhibit outstanding performance towards the HER and OER at large current densities, even in the order of 1000 mA cm<sup>−2</sup>. Density functional theory calculations show that FeNiS/IF as a bimetallic sulfide exhibits superior HER activity in alkaline media due to the optimization of Δ<em>G</em><sub>H*</sub> and a more favorable water adsorption process.</p></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324002983\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324002983","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发高电流密度下的非贵金属整体水分离电催化剂对于可行的水分离技术至关重要。在此,我们提出了一种通过在三维微孔铁泡沫上垂直原位构建硫化铁镍纳米片的常温硫化策略。合成条件简单,有利于大规模生产。FeNiS/IF 纳米片在大电流密度(甚至 1000 mA cm-2 量级)条件下表现出卓越的 HER 和 OER 性能。密度泛函理论计算表明,FeNiS/IF 作为一种双金属硫化物,由于优化了 ΔGH* 和更有利的水吸附过程,在碱性介质中表现出更高的 HER 活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of nickel iron sulfide at ambient temperature on Fe foam for high-current overall water splitting†

The development of non-precious metal overall water splitting electrocatalysts under high current density is of utmost importance in feasible water splitting technology. Herein, we present an ambient temperature sulfuration strategy through in situ construction of iron nickel sulfide nanosheets vertically on 3D microporous iron foam. The synthesis conditions are simple and conducive to large-scale production. The FeNiS/IF nanosheets exhibit outstanding performance towards the HER and OER at large current densities, even in the order of 1000 mA cm−2. Density functional theory calculations show that FeNiS/IF as a bimetallic sulfide exhibits superior HER activity in alkaline media due to the optimization of ΔGH* and a more favorable water adsorption process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Back cover Inside back cover Outstanding Reviewers for Catalysis Science & Technology in 2023 Thermostable fatty acid hydroxylases from ancestral reconstruction of cytochrome P450 family 4 enzymes Catalytic processes for the selective hydrogenation of fats and oils: reevaluating a mature technology for feedstock diversification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1