Cu-Al2O3 界面:甲醇蒸汽转化制氢过程中不可忽视的活性位点

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-06-17 DOI:10.1039/d4cy00401a
Qianlong Mao , Zirui Gao , Xiaohui Liu , Yong Guo , Yanqin Wang , Ding Ma
{"title":"Cu-Al2O3 界面:甲醇蒸汽转化制氢过程中不可忽视的活性位点","authors":"Qianlong Mao ,&nbsp;Zirui Gao ,&nbsp;Xiaohui Liu ,&nbsp;Yong Guo ,&nbsp;Yanqin Wang ,&nbsp;Ding Ma","doi":"10.1039/d4cy00401a","DOIUrl":null,"url":null,"abstract":"<div><p>Methanol steam reforming (MSR) is a convenient method for <em>in situ</em> hydrogen production and broadens hydrogen energy application. Identifying the intrinsic activity of Cu-based catalysts for MSR and developing more efficient catalysts is a significant topic for applying <em>in situ</em> hydrogen production. Here, we developed a series of copper catalysts supported by Al<sub>2</sub>O<sub>3</sub> with varying copper contents. The highest hydrogen production rate of 147.6 μmol g<sup>−1</sup> s<sup>−1</sup> was obtained over 10Cu/Al<sub>2</sub>O<sub>3</sub> at 250 °C, exceeding most copper-based metallic oxide catalysts. Quasi <em>in situ</em> XPS and CO DRIFTS revealed the variation trend of copper's electronic state in <em>m</em>Cu/Al<sub>2</sub>O<sub>3</sub> catalysts, where <em>m</em> is the copper loading (in weight percentage). Meanwhile, intermediate formate species adsorbed on the interfacial site at 1602 cm<sup>−1</sup> were detected by <em>in situ</em> DRIFTS. This formate species (HCOO–CuAl) dissociated faster to CO<sub>2</sub> and H<sub>2</sub> than those adsorbed on Al<sub>2</sub>O<sub>3</sub> (HCOO–Al). The inverse Al<sub>2</sub>O<sub>3</sub>/Cu catalyst further confirmed that the Cu–Al<sub>2</sub>O<sub>3</sub> interfaces play a crucial role in MSR. This work defines the copper–oxide interface as the main active site in MSR and guides the construction of high-performance catalysts.</p></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cu–Al2O3 interface: an unignorable active site for methanol steam reforming hydrogen production†\",\"authors\":\"Qianlong Mao ,&nbsp;Zirui Gao ,&nbsp;Xiaohui Liu ,&nbsp;Yong Guo ,&nbsp;Yanqin Wang ,&nbsp;Ding Ma\",\"doi\":\"10.1039/d4cy00401a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Methanol steam reforming (MSR) is a convenient method for <em>in situ</em> hydrogen production and broadens hydrogen energy application. Identifying the intrinsic activity of Cu-based catalysts for MSR and developing more efficient catalysts is a significant topic for applying <em>in situ</em> hydrogen production. Here, we developed a series of copper catalysts supported by Al<sub>2</sub>O<sub>3</sub> with varying copper contents. The highest hydrogen production rate of 147.6 μmol g<sup>−1</sup> s<sup>−1</sup> was obtained over 10Cu/Al<sub>2</sub>O<sub>3</sub> at 250 °C, exceeding most copper-based metallic oxide catalysts. Quasi <em>in situ</em> XPS and CO DRIFTS revealed the variation trend of copper's electronic state in <em>m</em>Cu/Al<sub>2</sub>O<sub>3</sub> catalysts, where <em>m</em> is the copper loading (in weight percentage). Meanwhile, intermediate formate species adsorbed on the interfacial site at 1602 cm<sup>−1</sup> were detected by <em>in situ</em> DRIFTS. This formate species (HCOO–CuAl) dissociated faster to CO<sub>2</sub> and H<sub>2</sub> than those adsorbed on Al<sub>2</sub>O<sub>3</sub> (HCOO–Al). The inverse Al<sub>2</sub>O<sub>3</sub>/Cu catalyst further confirmed that the Cu–Al<sub>2</sub>O<sub>3</sub> interfaces play a crucial role in MSR. This work defines the copper–oxide interface as the main active site in MSR and guides the construction of high-performance catalysts.</p></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324003010\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324003010","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

甲醇蒸汽转化(MSR)是一种方便的原位制氢方法,可拓宽氢能应用领域。确定铜基催化剂在 MSR 中的内在活性并开发更高效的催化剂是应用原位制氢的重要课题。在此,我们开发了一系列不同铜含量的 Al2O3 支持的铜催化剂。在 250 °C 下,10Cu/Al2O3 的最高制氢率为 147.6 μmol g-1 s-1,超过了大多数铜基金属氧化物催化剂。准原位 XPS 和 CO DRIFTS 揭示了 mCu/Al2O3 催化剂中铜电子状态的变化趋势,其中 m 为铜负载量(重量百分比)。同时,原位 DRIFTS 检测到了吸附在界面部位 1602 cm-1 处的中间甲酸盐物种。这种甲酸盐种类(HCOO-CuAl)比吸附在 Al2O3 上的甲酸盐种类(HCOO-Al)更快地解离成 CO2 和 H2。反相 Al2O3/Cu 催化剂进一步证实,Cu-Al2O3 界面在 MSR 中起着至关重要的作用。这项工作确定了铜-氧化物界面是 MSR 的主要活性位点,并为构建高性能催化剂提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Cu–Al2O3 interface: an unignorable active site for methanol steam reforming hydrogen production†

Methanol steam reforming (MSR) is a convenient method for in situ hydrogen production and broadens hydrogen energy application. Identifying the intrinsic activity of Cu-based catalysts for MSR and developing more efficient catalysts is a significant topic for applying in situ hydrogen production. Here, we developed a series of copper catalysts supported by Al2O3 with varying copper contents. The highest hydrogen production rate of 147.6 μmol g−1 s−1 was obtained over 10Cu/Al2O3 at 250 °C, exceeding most copper-based metallic oxide catalysts. Quasi in situ XPS and CO DRIFTS revealed the variation trend of copper's electronic state in mCu/Al2O3 catalysts, where m is the copper loading (in weight percentage). Meanwhile, intermediate formate species adsorbed on the interfacial site at 1602 cm−1 were detected by in situ DRIFTS. This formate species (HCOO–CuAl) dissociated faster to CO2 and H2 than those adsorbed on Al2O3 (HCOO–Al). The inverse Al2O3/Cu catalyst further confirmed that the Cu–Al2O3 interfaces play a crucial role in MSR. This work defines the copper–oxide interface as the main active site in MSR and guides the construction of high-performance catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Back cover Hydrolysis of ammonia borane for green hydrogen production over a Pd/C3N4 nanocatalyst synthesized by electron beam irradiation Back cover Combined experimental and molecular dynamics approach towards a rational design of the YfeX biocatalyst for enhanced carbene transferase reactivity† ZIF-8 pyrolized N-doped carbon-supported iron catalysts for enhanced CO2 hydrogenation activity to valuable hydrocarbons†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1