利用混沌动力学生成循环图像

Takaya Tanaka, Yutaka Yamaguti
{"title":"利用混沌动力学生成循环图像","authors":"Takaya Tanaka, Yutaka Yamaguti","doi":"arxiv-2405.20717","DOIUrl":null,"url":null,"abstract":"Successive image generation using cyclic transformations is demonstrated by\nextending the CycleGAN model to transform images among three different\ncategories. Repeated application of the trained generators produces sequences\nof images that transition among the different categories. The generated image\nsequences occupy a more limited region of the image space compared with the\noriginal training dataset. Quantitative evaluation using precision and recall\nmetrics indicates that the generated images have high quality but reduced\ndiversity relative to the training dataset. Such successive generation\nprocesses are characterized as chaotic dynamics in terms of dynamical system\ntheory. Positive Lyapunov exponents estimated from the generated trajectories\nconfirm the presence of chaotic dynamics, with the Lyapunov dimension of the\nattractor found to be comparable to the intrinsic dimension of the training\ndata manifold. The results suggest that chaotic dynamics in the image space\ndefined by the deep generative model contribute to the diversity of the\ngenerated images, constituting a novel approach for multi-class image\ngeneration. This model can be interpreted as an extension of classical\nassociative memory to perform hetero-association among image categories.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic image generation using chaotic dynamics\",\"authors\":\"Takaya Tanaka, Yutaka Yamaguti\",\"doi\":\"arxiv-2405.20717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Successive image generation using cyclic transformations is demonstrated by\\nextending the CycleGAN model to transform images among three different\\ncategories. Repeated application of the trained generators produces sequences\\nof images that transition among the different categories. The generated image\\nsequences occupy a more limited region of the image space compared with the\\noriginal training dataset. Quantitative evaluation using precision and recall\\nmetrics indicates that the generated images have high quality but reduced\\ndiversity relative to the training dataset. Such successive generation\\nprocesses are characterized as chaotic dynamics in terms of dynamical system\\ntheory. Positive Lyapunov exponents estimated from the generated trajectories\\nconfirm the presence of chaotic dynamics, with the Lyapunov dimension of the\\nattractor found to be comparable to the intrinsic dimension of the training\\ndata manifold. The results suggest that chaotic dynamics in the image space\\ndefined by the deep generative model contribute to the diversity of the\\ngenerated images, constituting a novel approach for multi-class image\\ngeneration. This model can be interpreted as an extension of classical\\nassociative memory to perform hetero-association among image categories.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.20717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.20717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过扩展 CycleGAN 模型以在三个不同类别之间转换图像,展示了利用循环变换生成连续图像的方法。重复应用训练有素的生成器可以生成在不同类别之间转换的图像序列。与原始训练数据集相比,生成的图像序列占据的图像空间区域更为有限。使用精确度和召回率进行的定量评估表明,生成的图像质量很高,但相对于训练数据集,多样性有所降低。根据动力系统理论,这种连续生成过程具有混沌动力学的特征。根据生成轨迹估算的正 Lyapunov 指数证实了混沌动力学的存在,发现曳光机的 Lyapunov 维度与训练数据流形的内在维度相当。结果表明,深度生成模型所定义的图像空间中的混沌动力学有助于生成图像的多样性,是多类图像生成的一种新方法。该模型可被解释为经典关联记忆的扩展,以执行图像类别之间的异关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyclic image generation using chaotic dynamics
Successive image generation using cyclic transformations is demonstrated by extending the CycleGAN model to transform images among three different categories. Repeated application of the trained generators produces sequences of images that transition among the different categories. The generated image sequences occupy a more limited region of the image space compared with the original training dataset. Quantitative evaluation using precision and recall metrics indicates that the generated images have high quality but reduced diversity relative to the training dataset. Such successive generation processes are characterized as chaotic dynamics in terms of dynamical system theory. Positive Lyapunov exponents estimated from the generated trajectories confirm the presence of chaotic dynamics, with the Lyapunov dimension of the attractor found to be comparable to the intrinsic dimension of the training data manifold. The results suggest that chaotic dynamics in the image space defined by the deep generative model contribute to the diversity of the generated images, constituting a novel approach for multi-class image generation. This model can be interpreted as an extension of classical associative memory to perform hetero-association among image categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunneling Time for Walking Droplets on an Oscillating Liquid Surface Rydberg excitons in cuprous oxide: A two-particle system with classical chaos Disruption of exo-asteroids around white dwarfs and the release of dust particles in debris rings in co-orbital motion Machine-aided guessing and gluing of unstable periodic orbits Nonequilibrium dynamics of coupled oscillators under the shear-velocity boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1