L. N. Karelina, N. S. Shuravin, S. V. Egorov, V. V. Bol’ginov, V. V. Ryazanov
{"title":"低温下 FSF 电桥的磁性开关","authors":"L. N. Karelina, N. S. Shuravin, S. V. Egorov, V. V. Bol’ginov, V. V. Ryazanov","doi":"10.1134/S0021364024600836","DOIUrl":null,"url":null,"abstract":"<p>The voltage–current characteristics of planar Pd<sub>0.99</sub>Fe<sub>0.01</sub>–Nb–Pd<sub>0.99</sub>Fe<sub>0.01</sub> microbridges at temperatures significantly lower than the critical one are studied experimentally. It has been found that a magnetic memory effect, which is manifested in the dependence of the shape of the voltage–current characteristics on the mutual orientation of the magnetizations of the F layers, is observed even at such low temperatures. It has been shown that the studied sample can serve as a magnetic switch with a voltage distinction of more than 600 μV, which corresponds to a characteristic frequency of about 300 GHz if such bridges are used as memory elements in rapid single-flux quantum logic devices. These characteristics are obtained at a temperature of 0.93<i>T</i><sub>c</sub>, which is the minimum operating temperature of the implemented memory element. A low-voltage mode of operation of the sample is discovered, characterized by a wide range of permissible bias currents.</p>","PeriodicalId":604,"journal":{"name":"JETP Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Switching of FSF Bridges at Low Temperatures\",\"authors\":\"L. N. Karelina, N. S. Shuravin, S. V. Egorov, V. V. Bol’ginov, V. V. Ryazanov\",\"doi\":\"10.1134/S0021364024600836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The voltage–current characteristics of planar Pd<sub>0.99</sub>Fe<sub>0.01</sub>–Nb–Pd<sub>0.99</sub>Fe<sub>0.01</sub> microbridges at temperatures significantly lower than the critical one are studied experimentally. It has been found that a magnetic memory effect, which is manifested in the dependence of the shape of the voltage–current characteristics on the mutual orientation of the magnetizations of the F layers, is observed even at such low temperatures. It has been shown that the studied sample can serve as a magnetic switch with a voltage distinction of more than 600 μV, which corresponds to a characteristic frequency of about 300 GHz if such bridges are used as memory elements in rapid single-flux quantum logic devices. These characteristics are obtained at a temperature of 0.93<i>T</i><sub>c</sub>, which is the minimum operating temperature of the implemented memory element. A low-voltage mode of operation of the sample is discovered, characterized by a wide range of permissible bias currents.</p>\",\"PeriodicalId\":604,\"journal\":{\"name\":\"JETP Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JETP Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0021364024600836\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JETP Letters","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0021364024600836","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetic Switching of FSF Bridges at Low Temperatures
The voltage–current characteristics of planar Pd0.99Fe0.01–Nb–Pd0.99Fe0.01 microbridges at temperatures significantly lower than the critical one are studied experimentally. It has been found that a magnetic memory effect, which is manifested in the dependence of the shape of the voltage–current characteristics on the mutual orientation of the magnetizations of the F layers, is observed even at such low temperatures. It has been shown that the studied sample can serve as a magnetic switch with a voltage distinction of more than 600 μV, which corresponds to a characteristic frequency of about 300 GHz if such bridges are used as memory elements in rapid single-flux quantum logic devices. These characteristics are obtained at a temperature of 0.93Tc, which is the minimum operating temperature of the implemented memory element. A low-voltage mode of operation of the sample is discovered, characterized by a wide range of permissible bias currents.
期刊介绍:
All topics of experimental and theoretical physics including gravitation, field theory, elementary particles and nuclei, plasma, nonlinear phenomena, condensed matter, superconductivity, superfluidity, lasers, and surfaces.