泄漏延迟对具有五个神经元和离散延迟的分数阶双向联想记忆神经网络分岔的影响

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Computation Pub Date : 2024-06-05 DOI:10.1007/s12559-024-10305-0
Yangling Wang, Jinde Cao, Chengdai Huang
{"title":"泄漏延迟对具有五个神经元和离散延迟的分数阶双向联想记忆神经网络分岔的影响","authors":"Yangling Wang, Jinde Cao, Chengdai Huang","doi":"10.1007/s12559-024-10305-0","DOIUrl":null,"url":null,"abstract":"<p>As is well known that time delays are inevitable in practice due to the finite switching speed of amplifiers and information transmission between neurons. So the study on the Hopf bifurcation of delayed neural networks has aroused extensive attention in recent years. However, it’s worth mentioning that only the communication delays between neurons were generally considered in most existing relevant literatures. Actually, it has been proven that a kind of so-called leakage delays cannot be ignored because the self-decay process of a neuron’s action potential is not instantaneous in hardware implementation of neural networks. Though leakage delays have been taken into account in a few more recent works concerning the Hopf bifurcation of fractional-order bidirectional associative memory neural networks, the addressed neural networks were low-dimension or the involved time delays were single. In this paper, we propose a five-neuron fractional-order bidirectional associative memory neural network model, which includes leakage delays and discrete communication delays to meet the characteristics of real neural networks better. Then we use the stability theory of fractional differential equations and Hopf bifurcation theory to investigate its dynamic behavior of Hopf bifurcation. The Hopf bifurcation of the proposed model are studied by taking the involved two different leakage delays as the bifurcation parameter respectively, and two kinds of sufficient conditions for Hopf bifurcation are obtained. A numerical example as well as its simulation plots and phase portraits are given at last. Our results indicate that a Hopf bifurcation rises near the zero equilibrium point when the leakage delay reaches its critical value which is given by an explicit formula. Particularly, the results of numerical simulations show that the leakage delay would narrow the stability region of the proposed system and make the Hopf bifurcation occur earlier.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"311 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Leakage Delays on Bifurcation in Fractional-Order Bidirectional Associative Memory Neural Networks with Five Neurons and Discrete Delays\",\"authors\":\"Yangling Wang, Jinde Cao, Chengdai Huang\",\"doi\":\"10.1007/s12559-024-10305-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As is well known that time delays are inevitable in practice due to the finite switching speed of amplifiers and information transmission between neurons. So the study on the Hopf bifurcation of delayed neural networks has aroused extensive attention in recent years. However, it’s worth mentioning that only the communication delays between neurons were generally considered in most existing relevant literatures. Actually, it has been proven that a kind of so-called leakage delays cannot be ignored because the self-decay process of a neuron’s action potential is not instantaneous in hardware implementation of neural networks. Though leakage delays have been taken into account in a few more recent works concerning the Hopf bifurcation of fractional-order bidirectional associative memory neural networks, the addressed neural networks were low-dimension or the involved time delays were single. In this paper, we propose a five-neuron fractional-order bidirectional associative memory neural network model, which includes leakage delays and discrete communication delays to meet the characteristics of real neural networks better. Then we use the stability theory of fractional differential equations and Hopf bifurcation theory to investigate its dynamic behavior of Hopf bifurcation. The Hopf bifurcation of the proposed model are studied by taking the involved two different leakage delays as the bifurcation parameter respectively, and two kinds of sufficient conditions for Hopf bifurcation are obtained. A numerical example as well as its simulation plots and phase portraits are given at last. Our results indicate that a Hopf bifurcation rises near the zero equilibrium point when the leakage delay reaches its critical value which is given by an explicit formula. Particularly, the results of numerical simulations show that the leakage delay would narrow the stability region of the proposed system and make the Hopf bifurcation occur earlier.</p>\",\"PeriodicalId\":51243,\"journal\":{\"name\":\"Cognitive Computation\",\"volume\":\"311 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12559-024-10305-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10305-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,在实际应用中,由于放大器的开关速度和神经元之间的信息传输速度有限,时间延迟是不可避免的。因此,近年来关于延迟神经网络霍普夫分岔的研究引起了广泛关注。然而,值得一提的是,在现有的大多数相关文献中,一般只考虑了神经元之间的通信延迟。实际上,在神经网络的硬件实现过程中,神经元动作电位的自衰减过程并不是瞬时的,因此有一种所谓的泄漏延迟是不容忽视的。虽然最近一些关于分数阶双向联想记忆神经网络霍普夫分岔的研究也考虑到了泄漏延迟,但所涉及的神经网络维度较低,或者涉及的时间延迟比较单一。本文提出了一种五神经元分数阶双向联想记忆神经网络模型,该模型包含泄漏延迟和离散通信延迟,更符合实际神经网络的特点。然后,我们利用分数微分方程的稳定性理论和霍普夫分岔理论来研究其霍普夫分岔的动态行为。以两种不同的泄漏延迟为分岔参数,分别研究了所提模型的霍普夫分岔,并得到了霍普夫分岔的两种充分条件。最后给出了一个数值实例及其仿真图和相位图。我们的结果表明,当泄漏延迟达到临界值时,霍普夫分岔就会在零平衡点附近出现。特别是,数值模拟结果表明,泄漏延迟会缩小拟议系统的稳定区域,并使霍普夫分岔提前发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Leakage Delays on Bifurcation in Fractional-Order Bidirectional Associative Memory Neural Networks with Five Neurons and Discrete Delays

As is well known that time delays are inevitable in practice due to the finite switching speed of amplifiers and information transmission between neurons. So the study on the Hopf bifurcation of delayed neural networks has aroused extensive attention in recent years. However, it’s worth mentioning that only the communication delays between neurons were generally considered in most existing relevant literatures. Actually, it has been proven that a kind of so-called leakage delays cannot be ignored because the self-decay process of a neuron’s action potential is not instantaneous in hardware implementation of neural networks. Though leakage delays have been taken into account in a few more recent works concerning the Hopf bifurcation of fractional-order bidirectional associative memory neural networks, the addressed neural networks were low-dimension or the involved time delays were single. In this paper, we propose a five-neuron fractional-order bidirectional associative memory neural network model, which includes leakage delays and discrete communication delays to meet the characteristics of real neural networks better. Then we use the stability theory of fractional differential equations and Hopf bifurcation theory to investigate its dynamic behavior of Hopf bifurcation. The Hopf bifurcation of the proposed model are studied by taking the involved two different leakage delays as the bifurcation parameter respectively, and two kinds of sufficient conditions for Hopf bifurcation are obtained. A numerical example as well as its simulation plots and phase portraits are given at last. Our results indicate that a Hopf bifurcation rises near the zero equilibrium point when the leakage delay reaches its critical value which is given by an explicit formula. Particularly, the results of numerical simulations show that the leakage delay would narrow the stability region of the proposed system and make the Hopf bifurcation occur earlier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Computation
Cognitive Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-NEUROSCIENCES
CiteScore
9.30
自引率
3.70%
发文量
116
审稿时长
>12 weeks
期刊介绍: Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.
期刊最新文献
A Joint Network for Low-Light Image Enhancement Based on Retinex Incorporating Template-Based Contrastive Learning into Cognitively Inspired, Low-Resource Relation Extraction A Novel Cognitive Rough Approach for Severity Analysis of Autistic Children Using Spherical Fuzzy Bipolar Soft Sets Cognitively Inspired Three-Way Decision Making and Bi-Level Evolutionary Optimization for Mobile Cybersecurity Threats Detection: A Case Study on Android Malware Probing Fundamental Visual Comprehend Capabilities on Vision Language Models via Visual Phrases from Structural Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1