Christina Pyromali, Hamid Taghipour, Laurence G. D. Hawke
{"title":"快速剪切中的缠结线性聚合物:基于微分管的建模评估,包括流动诱发的解缠和链翻滚","authors":"Christina Pyromali, Hamid Taghipour, Laurence G. D. Hawke","doi":"10.1007/s00397-024-01450-2","DOIUrl":null,"url":null,"abstract":"<div><p>Flow-induced disentanglement (FID or CCR-D) and chain tumbling are two molecular mechanisms typically observed in non-equilibrium molecular dynamics simulations of entangled polymer melts under fast shear. As regards quantitative performance, classical tube models exhibit limitations at fast rates presumably due to the negligence of the aforementioned mechanisms. CCR-D or tumbling inclusion is reported in some revised tube models. For example, in Desai–Larson’s (DL) work (J Rheol 58:255–279, 2014), which focuses on uniaxial elongation, FID is coupled to the alignment and stretch status of the chains. In Costanzo et al. (Macromolecules 49:3925–3935, 2016), tumbling is accounted for via incorporation of a semi-empirical tumbling function in the stretch equation. Nevertheless, CCR-D is neglected. Here, we include tumbling in the DL differential constitutive set and we assess its performance at shear and relaxation following shear. Model predictions are compared against data on various polystyrene melts as obtained by a cone-partitioned-plate fixture.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 7","pages":"541 - 572"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entangled linear polymers in fast shear: evaluation of differential tube-based modeling including flow-induced disentanglement and chain tumbling\",\"authors\":\"Christina Pyromali, Hamid Taghipour, Laurence G. D. Hawke\",\"doi\":\"10.1007/s00397-024-01450-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flow-induced disentanglement (FID or CCR-D) and chain tumbling are two molecular mechanisms typically observed in non-equilibrium molecular dynamics simulations of entangled polymer melts under fast shear. As regards quantitative performance, classical tube models exhibit limitations at fast rates presumably due to the negligence of the aforementioned mechanisms. CCR-D or tumbling inclusion is reported in some revised tube models. For example, in Desai–Larson’s (DL) work (J Rheol 58:255–279, 2014), which focuses on uniaxial elongation, FID is coupled to the alignment and stretch status of the chains. In Costanzo et al. (Macromolecules 49:3925–3935, 2016), tumbling is accounted for via incorporation of a semi-empirical tumbling function in the stretch equation. Nevertheless, CCR-D is neglected. Here, we include tumbling in the DL differential constitutive set and we assess its performance at shear and relaxation following shear. Model predictions are compared against data on various polystyrene melts as obtained by a cone-partitioned-plate fixture.</p></div>\",\"PeriodicalId\":755,\"journal\":{\"name\":\"Rheologica Acta\",\"volume\":\"63 7\",\"pages\":\"541 - 572\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rheologica Acta\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00397-024-01450-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-024-01450-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Entangled linear polymers in fast shear: evaluation of differential tube-based modeling including flow-induced disentanglement and chain tumbling
Flow-induced disentanglement (FID or CCR-D) and chain tumbling are two molecular mechanisms typically observed in non-equilibrium molecular dynamics simulations of entangled polymer melts under fast shear. As regards quantitative performance, classical tube models exhibit limitations at fast rates presumably due to the negligence of the aforementioned mechanisms. CCR-D or tumbling inclusion is reported in some revised tube models. For example, in Desai–Larson’s (DL) work (J Rheol 58:255–279, 2014), which focuses on uniaxial elongation, FID is coupled to the alignment and stretch status of the chains. In Costanzo et al. (Macromolecules 49:3925–3935, 2016), tumbling is accounted for via incorporation of a semi-empirical tumbling function in the stretch equation. Nevertheless, CCR-D is neglected. Here, we include tumbling in the DL differential constitutive set and we assess its performance at shear and relaxation following shear. Model predictions are compared against data on various polystyrene melts as obtained by a cone-partitioned-plate fixture.
期刊介绍:
"Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications.
The Scope of Rheologica Acta includes:
- Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology
- Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food.
- Rheology of Solids, chemo-rheology
- Electro and magnetorheology
- Theory of rheology
- Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities
- Interfacial rheology
Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."