建立用于组合优化的通用 GNN 框架

Frederik Wenkel, Semih Cantürk, Michael Perlmutter, Guy Wolf
{"title":"建立用于组合优化的通用 GNN 框架","authors":"Frederik Wenkel, Semih Cantürk, Michael Perlmutter, Guy Wolf","doi":"arxiv-2405.20543","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) have achieved great success for a variety of\ntasks such as node classification, graph classification, and link prediction.\nHowever, the use of GNNs (and machine learning more generally) to solve\ncombinatorial optimization (CO) problems is much less explored. Here, we\nintroduce a novel GNN architecture which leverages a complex filter bank and\nlocalized attention mechanisms designed to solve CO problems on graphs. We show\nhow our method differentiates itself from prior GNN-based CO solvers and how it\ncan be effectively applied to the maximum clique, minimum dominating set, and\nmaximum cut problems in a self-supervised learning setting. In addition to\ndemonstrating competitive overall performance across all tasks, we establish\nstate-of-the-art results for the max cut problem.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a General GNN Framework for Combinatorial Optimization\",\"authors\":\"Frederik Wenkel, Semih Cantürk, Michael Perlmutter, Guy Wolf\",\"doi\":\"arxiv-2405.20543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph neural networks (GNNs) have achieved great success for a variety of\\ntasks such as node classification, graph classification, and link prediction.\\nHowever, the use of GNNs (and machine learning more generally) to solve\\ncombinatorial optimization (CO) problems is much less explored. Here, we\\nintroduce a novel GNN architecture which leverages a complex filter bank and\\nlocalized attention mechanisms designed to solve CO problems on graphs. We show\\nhow our method differentiates itself from prior GNN-based CO solvers and how it\\ncan be effectively applied to the maximum clique, minimum dominating set, and\\nmaximum cut problems in a self-supervised learning setting. In addition to\\ndemonstrating competitive overall performance across all tasks, we establish\\nstate-of-the-art results for the max cut problem.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.20543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.20543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络(GNN)在节点分类、图分类和链接预测等各种任务中取得了巨大成功。然而,利用 GNN(以及更广泛的机器学习)解决组合优化(CO)问题的探索却少得多。在这里,我们介绍了一种新颖的 GNN 架构,它利用复杂的滤波器库和定位注意力机制来解决图上的 CO 问题。我们展示了我们的方法如何区别于之前基于 GNN 的 CO 求解器,以及它如何有效地应用于自我监督学习环境中的最大簇、最小支配集和最大切割问题。除了在所有任务中展示了具有竞争力的整体性能外,我们还在最大切割问题上取得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a General GNN Framework for Combinatorial Optimization
Graph neural networks (GNNs) have achieved great success for a variety of tasks such as node classification, graph classification, and link prediction. However, the use of GNNs (and machine learning more generally) to solve combinatorial optimization (CO) problems is much less explored. Here, we introduce a novel GNN architecture which leverages a complex filter bank and localized attention mechanisms designed to solve CO problems on graphs. We show how our method differentiates itself from prior GNN-based CO solvers and how it can be effectively applied to the maximum clique, minimum dominating set, and maximum cut problems in a self-supervised learning setting. In addition to demonstrating competitive overall performance across all tasks, we establish state-of-the-art results for the max cut problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reconfiguration of labeled matchings in triangular grid graphs Decision problems on geometric tilings Ants on the highway A sequential solution to the density classification task using an intermediate alphabet Complexity of Deciding the Equality of Matching Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1