{"title":"使用压缩算法降低 NOMA 波形的峰值与平均功率比","authors":"Arun Kumar, Nishant Gaur","doi":"10.3103/s0735272723040039","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Future wireless communication systems can accommodate huge connections and improve spectrum efficiency by using the approach based on non-orthogonal multiple access (NOMA). High peak-to-average power ratio (PAPR) levels can, however, negatively affect NOMA, resulting in decreased system performance and more complicated power amplifiers. This study suggests PAPR reduction in NOMA by utilizing companding methods for 512, 256, and 64 sub-carriers to address this problem. The high peak power of NOMA signals may be effectively compressed by using nonlinear companding techniques, such as μ-law and A-law companding, which reduces distortion and improves overall system dependability. Simulations are used to assess the effectiveness of the suggested companding methods, and the findings show a significant reduction in PAPR assuring an increased bit error rate (BER) effectiveness and transmission resilience in NOMA-based communication systems. The suggested method is contrasted with the conventional A-law (C-A-Law) and μ-law (C-μ-law).</p>","PeriodicalId":52470,"journal":{"name":"Radioelectronics and Communications Systems","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peak to Average Power Ratio Reduction Using Companding Algorithm for NOMA Waveform\",\"authors\":\"Arun Kumar, Nishant Gaur\",\"doi\":\"10.3103/s0735272723040039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Future wireless communication systems can accommodate huge connections and improve spectrum efficiency by using the approach based on non-orthogonal multiple access (NOMA). High peak-to-average power ratio (PAPR) levels can, however, negatively affect NOMA, resulting in decreased system performance and more complicated power amplifiers. This study suggests PAPR reduction in NOMA by utilizing companding methods for 512, 256, and 64 sub-carriers to address this problem. The high peak power of NOMA signals may be effectively compressed by using nonlinear companding techniques, such as μ-law and A-law companding, which reduces distortion and improves overall system dependability. Simulations are used to assess the effectiveness of the suggested companding methods, and the findings show a significant reduction in PAPR assuring an increased bit error rate (BER) effectiveness and transmission resilience in NOMA-based communication systems. The suggested method is contrasted with the conventional A-law (C-A-Law) and μ-law (C-μ-law).</p>\",\"PeriodicalId\":52470,\"journal\":{\"name\":\"Radioelectronics and Communications Systems\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioelectronics and Communications Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0735272723040039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioelectronics and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0735272723040039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Peak to Average Power Ratio Reduction Using Companding Algorithm for NOMA Waveform
Abstract
Future wireless communication systems can accommodate huge connections and improve spectrum efficiency by using the approach based on non-orthogonal multiple access (NOMA). High peak-to-average power ratio (PAPR) levels can, however, negatively affect NOMA, resulting in decreased system performance and more complicated power amplifiers. This study suggests PAPR reduction in NOMA by utilizing companding methods for 512, 256, and 64 sub-carriers to address this problem. The high peak power of NOMA signals may be effectively compressed by using nonlinear companding techniques, such as μ-law and A-law companding, which reduces distortion and improves overall system dependability. Simulations are used to assess the effectiveness of the suggested companding methods, and the findings show a significant reduction in PAPR assuring an increased bit error rate (BER) effectiveness and transmission resilience in NOMA-based communication systems. The suggested method is contrasted with the conventional A-law (C-A-Law) and μ-law (C-μ-law).
期刊介绍:
Radioelectronics and Communications Systems covers urgent theoretical problems of radio-engineering; results of research efforts, leading experience, which determines directions and development of scientific research in radio engineering and radio electronics; publishes materials of scientific conferences and meetings; information on scientific work in higher educational institutions; newsreel and bibliographic materials. Journal publishes articles in the following sections:Antenna-feeding and microwave devices;Vacuum and gas-discharge devices;Solid-state electronics and integral circuit engineering;Optical radar, communication and information processing systems;Use of computers for research and design of radio-electronic devices and systems;Quantum electronic devices;Design of radio-electronic devices;Radar and radio navigation;Radio engineering devices and systems;Radio engineering theory;Medical radioelectronics.