应用德国股票指数数据和比特币加密货币数据检验稳定分布的拟合优度

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Statistics and Computing Pub Date : 2024-06-03 DOI:10.1007/s11222-024-10441-5
Ruhul Ali Khan, Ayan Pal, Debasis Kundu
{"title":"应用德国股票指数数据和比特币加密货币数据检验稳定分布的拟合优度","authors":"Ruhul Ali Khan, Ayan Pal, Debasis Kundu","doi":"10.1007/s11222-024-10441-5","DOIUrl":null,"url":null,"abstract":"<p>Outlier-prone data sets are of immense interest in diverse areas including economics, finance, statistical physics, signal processing, telecommunications and so on. Stable laws (also known as <span>\\(\\alpha \\)</span>- stable laws) are often found to be useful in modeling outlier-prone data containing important information and exhibiting heavy tailed phenomenon. In this article, an asymptotic distribution of a unbiased and consistent estimator of the stability index <span>\\(\\alpha \\)</span> is proposed based on jackknife empirical likelihood (JEL) and adjusted JEL method. Next, using the sum-preserving property of stable random variables and exploiting <i>U</i>-statistic theory, we have developed a goodness-of-fit test procedure for <span>\\(\\alpha \\)</span>-stable distributions where the stability index <span>\\(\\alpha \\)</span> is specified. Extensive simulation studies are performed in order to assess the finite sample performance of the proposed test. Finally, two appealing real life data examples related to the daily closing price of German Stock Index and Bitcoin cryptocurrency are analysed in detail for illustration purposes.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing the goodness-of-fit of the stable distributions with applications to German stock index data and Bitcoin cryptocurrency data\",\"authors\":\"Ruhul Ali Khan, Ayan Pal, Debasis Kundu\",\"doi\":\"10.1007/s11222-024-10441-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Outlier-prone data sets are of immense interest in diverse areas including economics, finance, statistical physics, signal processing, telecommunications and so on. Stable laws (also known as <span>\\\\(\\\\alpha \\\\)</span>- stable laws) are often found to be useful in modeling outlier-prone data containing important information and exhibiting heavy tailed phenomenon. In this article, an asymptotic distribution of a unbiased and consistent estimator of the stability index <span>\\\\(\\\\alpha \\\\)</span> is proposed based on jackknife empirical likelihood (JEL) and adjusted JEL method. Next, using the sum-preserving property of stable random variables and exploiting <i>U</i>-statistic theory, we have developed a goodness-of-fit test procedure for <span>\\\\(\\\\alpha \\\\)</span>-stable distributions where the stability index <span>\\\\(\\\\alpha \\\\)</span> is specified. Extensive simulation studies are performed in order to assess the finite sample performance of the proposed test. Finally, two appealing real life data examples related to the daily closing price of German Stock Index and Bitcoin cryptocurrency are analysed in detail for illustration purposes.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10441-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10441-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

离群值数据集在经济、金融、统计物理、信号处理、电信等多个领域都有着巨大的意义。稳定规律(也称为 \(α\)- 稳定规律)经常被用来模拟包含重要信息并表现出重尾现象的离群易变数据。本文基于杰克刀经验似然法(JEL)和调整JEL法,提出了稳定指数\(\alpha \)的无偏一致估计值的渐近分布。接下来,我们利用稳定随机变量的保和性并利用 U 统计理论,为指定了稳定指数 ()的 \(\α \)-稳定分布建立了拟合优度检验程序。为了评估所提出的测试的有限样本性能,进行了广泛的模拟研究。最后,为了说明问题,详细分析了与德国股票指数和比特币加密货币每日收盘价相关的两个有吸引力的现实生活数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing the goodness-of-fit of the stable distributions with applications to German stock index data and Bitcoin cryptocurrency data

Outlier-prone data sets are of immense interest in diverse areas including economics, finance, statistical physics, signal processing, telecommunications and so on. Stable laws (also known as \(\alpha \)- stable laws) are often found to be useful in modeling outlier-prone data containing important information and exhibiting heavy tailed phenomenon. In this article, an asymptotic distribution of a unbiased and consistent estimator of the stability index \(\alpha \) is proposed based on jackknife empirical likelihood (JEL) and adjusted JEL method. Next, using the sum-preserving property of stable random variables and exploiting U-statistic theory, we have developed a goodness-of-fit test procedure for \(\alpha \)-stable distributions where the stability index \(\alpha \) is specified. Extensive simulation studies are performed in order to assess the finite sample performance of the proposed test. Finally, two appealing real life data examples related to the daily closing price of German Stock Index and Bitcoin cryptocurrency are analysed in detail for illustration purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
期刊最新文献
Accelerated failure time models with error-prone response and nonlinear covariates Sequential model identification with reversible jump ensemble data assimilation method Hidden Markov models for multivariate panel data Shrinkage for extreme partial least-squares Nonconvex Dantzig selector and its parallel computing algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1