Sh.F. Tagiyeva, S. N. Osmanova, A. I. Rustamova, D. B. Tagiyev, E. H. Ismailov
{"title":"在共含硅酸铝催化剂上甲烷化二氧化碳","authors":"Sh.F. Tagiyeva, S. N. Osmanova, A. I. Rustamova, D. B. Tagiyev, E. H. Ismailov","doi":"10.1007/s11237-024-09803-x","DOIUrl":null,"url":null,"abstract":"<p>Results of the study of CO<sub>2</sub> methanation on Co-containing catalysts based on Siral aluminosilicates with different SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratios (1, 10, and 40) are presented. It is shown that methane is the main product at temperatures up to 573 K, its yield varies depending on the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio of aluminosilicate. Carbon monoxide is formed along with methane at temperatures above 573 K. Maximum methane yields of 55% and 41% (at 573 K) are achieved on Co/Siral-1 and Co/Siral-10 catalysts. It is shown that catalysts reduced in a hydrogen flow are characterized by the presence of superpara/ferromagnetic particles and magnetic resonance parameters of their EMR spectra significantly depends on the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio of the aluminosilicate. It is assumed that the superpara/ferromagnetic particles formed during high-temperature hydrogen treatment of Co-containing aluminosilicates are catalytically active particles in the methanation of carbon dioxide.</p>","PeriodicalId":796,"journal":{"name":"Theoretical and Experimental Chemistry","volume":"59 6","pages":"434 - 441"},"PeriodicalIF":0.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methanation of Carbon Dioxide on Co-Containing Aluminosilicate Catalysts\",\"authors\":\"Sh.F. Tagiyeva, S. N. Osmanova, A. I. Rustamova, D. B. Tagiyev, E. H. Ismailov\",\"doi\":\"10.1007/s11237-024-09803-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Results of the study of CO<sub>2</sub> methanation on Co-containing catalysts based on Siral aluminosilicates with different SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratios (1, 10, and 40) are presented. It is shown that methane is the main product at temperatures up to 573 K, its yield varies depending on the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio of aluminosilicate. Carbon monoxide is formed along with methane at temperatures above 573 K. Maximum methane yields of 55% and 41% (at 573 K) are achieved on Co/Siral-1 and Co/Siral-10 catalysts. It is shown that catalysts reduced in a hydrogen flow are characterized by the presence of superpara/ferromagnetic particles and magnetic resonance parameters of their EMR spectra significantly depends on the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio of the aluminosilicate. It is assumed that the superpara/ferromagnetic particles formed during high-temperature hydrogen treatment of Co-containing aluminosilicates are catalytically active particles in the methanation of carbon dioxide.</p>\",\"PeriodicalId\":796,\"journal\":{\"name\":\"Theoretical and Experimental Chemistry\",\"volume\":\"59 6\",\"pages\":\"434 - 441\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Experimental Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11237-024-09803-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Experimental Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11237-024-09803-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了在基于不同 SiO2/Al2O3 比(1、10 和 40)的 Siral 铝硅酸盐的含 Co 催化剂上进行二氧化碳甲烷化的研究结果。结果表明,甲烷是温度高达 573 K 时的主要产物,其产量随硅酸铝的 SiO2/Al2O3 比率而变化。Co/Siral-1 和 Co/Siral-10 催化剂的甲烷产量分别达到 55% 和 41%(573 K 时)。研究表明,在氢气流中还原的催化剂的特点是存在超para/铁磁性颗粒,其电磁辐射光谱的磁共振参数在很大程度上取决于铝硅酸盐的 SiO2/Al2O3 比率。据推测,含 Co 的铝硅酸盐在高温氢处理过程中形成的超顺磁性/铁磁性微粒是二氧化碳甲烷化过程中的催化活性微粒。
Methanation of Carbon Dioxide on Co-Containing Aluminosilicate Catalysts
Results of the study of CO2 methanation on Co-containing catalysts based on Siral aluminosilicates with different SiO2/Al2O3 ratios (1, 10, and 40) are presented. It is shown that methane is the main product at temperatures up to 573 K, its yield varies depending on the SiO2/Al2O3 ratio of aluminosilicate. Carbon monoxide is formed along with methane at temperatures above 573 K. Maximum methane yields of 55% and 41% (at 573 K) are achieved on Co/Siral-1 and Co/Siral-10 catalysts. It is shown that catalysts reduced in a hydrogen flow are characterized by the presence of superpara/ferromagnetic particles and magnetic resonance parameters of their EMR spectra significantly depends on the SiO2/Al2O3 ratio of the aluminosilicate. It is assumed that the superpara/ferromagnetic particles formed during high-temperature hydrogen treatment of Co-containing aluminosilicates are catalytically active particles in the methanation of carbon dioxide.
期刊介绍:
Theoretical and Experimental Chemistry is a journal for the rapid publication of research communications and reviews on modern problems of physical chemistry such as:
a) physicochemical bases, principles, and methods for creation of novel processes, compounds, and materials;
b) physicochemical principles of chemical process control, influence of external physical forces on chemical reactions;
c) physical nanochemistry, nanostructures and nanomaterials, functional nanomaterials, size-dependent properties of materials.